IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Abstract

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades. The finest Chardonnay wines impart a unique and complex bouquet. Multi-dimensional GC-O recently evidenced 5 pyrroles reminiscent of hazelnut. A quantitative method was developed, highlighting their significantly higher abundance in Chardonnay. However, they proved to be irrelevant in sensory terms, given the low amounts measured in wines compared to their detection threshold. Yet, these aromatic compounds could represent interesting chemical markers of Chardonnay wines. They could also prove to be precursors of thiols newly identified, called thiopyrroles. Thus, it seemed interesting to study the influence of some enological parameters on their concentration in wines. First, the quantitative method of pyrroles in wine was optimized. The validated method was applied to determine pyrroles content of 27 Chardonnay wines elaborated in different containers: stainless steel tank, new and old barrels. The concentration of 1-methylpyrrole-2-carboxaldehyde (MPC), 1-ethylpyrrole-2-carboxaldehyde (EPC), 2-acetyl-1H-pyrrole (AP), and pyrrole-2-carboxaldehyde (PC) were significantly higher in wines made in new barrels than in older barrels or in stainless steel tank. These results showed that these pyrroles can partly be brought by oak wood during the winemaking process. However, pyrroles were also observed in the stainless steel tank modality, which indicated that these compounds have also a varietal origin. Only the 1H-pyrrole content did not seem to be influenced by the type of container, suggesting a purely varietal origin of this compound.

Then, a quantitative method of pyrroles in oak wood extracts was developed in order to study the influence of several cooperage parameters on their content. The influence of three types of traditional toasting on pyrroles concentration in oak wood was studied. Significantly higher concentrations were found in toasted than in untoasted wood extracts for all four pyrroles, regardless of the toasting process. The temperature and the time of toasting were also studied. Results showed that MPC and EPC content increased according to the two parameters studied, whereas AP and PC content tend to decrease in oak wood with a long toasting process. This finding brings new insights on the understanding of the molecular origin of chemical markers of Chardonnay wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Gammacurta Marine1, Lavigne Valérie1, Moine Virginie2, Darriet Philippe1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
2Biolaffort, Bordeaux, France

Contact the author

Keywords

Chardonnay wine, hazelnut-like notes, chemical markers, oak wood

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of management and seed mixture on species composition of vineyard inter-row vegetation, soil characteristics and grape berry traits

Context and purpose. Viticulture has exerted a profound influence on the landscape and biodiversity of numerous countries for centuries.

Smoke taint: Understanding and addressing the compositional consequences of grapevine exposure to smoke

Climate change has become a major challenge for grape and wine production around the world

Study of the “Charentes terroir” for wine production of Merlot and Sauvignon: method, installation of the experimental device, first results

Cognac vineyard is mainly dedicated to brandy production. Within the vineyard restructuring context, one part is turned over wine varieties for wine production (about 1,500 ha planted from 1999 to 2005). Today, the new wine producers need technical references about qualitative potential of the « Charentes Terroir », varieties and adapted vineyard management.
In order to answer to this professional request, an observatory of 18 plots of Merlot and 12 plots of Sauvignon have been laid out since 2003 and 2004 on various kinds of pedoclimate.

How different SO2 doses impact amino acid and volatile profile of white wines

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).