IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Abstract

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades. The finest Chardonnay wines impart a unique and complex bouquet. Multi-dimensional GC-O recently evidenced 5 pyrroles reminiscent of hazelnut. A quantitative method was developed, highlighting their significantly higher abundance in Chardonnay. However, they proved to be irrelevant in sensory terms, given the low amounts measured in wines compared to their detection threshold. Yet, these aromatic compounds could represent interesting chemical markers of Chardonnay wines. They could also prove to be precursors of thiols newly identified, called thiopyrroles. Thus, it seemed interesting to study the influence of some enological parameters on their concentration in wines. First, the quantitative method of pyrroles in wine was optimized. The validated method was applied to determine pyrroles content of 27 Chardonnay wines elaborated in different containers: stainless steel tank, new and old barrels. The concentration of 1-methylpyrrole-2-carboxaldehyde (MPC), 1-ethylpyrrole-2-carboxaldehyde (EPC), 2-acetyl-1H-pyrrole (AP), and pyrrole-2-carboxaldehyde (PC) were significantly higher in wines made in new barrels than in older barrels or in stainless steel tank. These results showed that these pyrroles can partly be brought by oak wood during the winemaking process. However, pyrroles were also observed in the stainless steel tank modality, which indicated that these compounds have also a varietal origin. Only the 1H-pyrrole content did not seem to be influenced by the type of container, suggesting a purely varietal origin of this compound.

Then, a quantitative method of pyrroles in oak wood extracts was developed in order to study the influence of several cooperage parameters on their content. The influence of three types of traditional toasting on pyrroles concentration in oak wood was studied. Significantly higher concentrations were found in toasted than in untoasted wood extracts for all four pyrroles, regardless of the toasting process. The temperature and the time of toasting were also studied. Results showed that MPC and EPC content increased according to the two parameters studied, whereas AP and PC content tend to decrease in oak wood with a long toasting process. This finding brings new insights on the understanding of the molecular origin of chemical markers of Chardonnay wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Gammacurta Marine1, Lavigne Valérie1, Moine Virginie2, Darriet Philippe1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
2Biolaffort, Bordeaux, France

Contact the author

Keywords

Chardonnay wine, hazelnut-like notes, chemical markers, oak wood

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Stem growth disorder and xylem anatomy modifications during esca pathogenesis in grapevines

Esca is a grapevine vascular disease with detrimental consequences on vineyard yield and longevity. Recently, esca leaf symptom development has been shown to result in the occlusion of xylem vessels by tyloses in leaves and stems, leading to hydraulic failure. However, little is known regarding the response of xylem anatomy and stem growth to esca in different varieties . Here we studied the impact of esca leaf symptom development on grapevine physiology, stem growth, and xylem anatomy in two widespread cultivars, Cabernet sauvignon and Sauvignon blanc.

French wine sector facing climate change (part. 2) : the implementation of the national strategy

This summary follows this made by Hervé Hannin et al. Entitled “French wine sector facing climate change (part. 1) : a national strategy built on a foresight and participatory approach “. The french wine sector has taken a collective approach to the issue of climate change, and has officially submitted its strategy to the minister of agriculture in 2021. This industry policy is the result of multidisciplinary work carried out through the “laccave” project (metaprogramme accaf, inrae) and its prospective study designed to anticipate climate change in the french wine industry (aigrain p. Et al., 2016). French wine professionals decided to structure a strategy to deal with climate change du in particular to the presentation made at the 2016 OIV congress in Brazil.

Étude des potentialités des terroirs viticoles: une démarche globale en zone A.O.C. L’exemple des Côtes du Rhône

Depuis près d’une quinzaine d’années, l’Appellation d’Origine Contrôlée (A.O.C.) Côtes du Rhône a engagé un vaste programme afin de mieux connaître et valoriser les potentialités des différents terroirs qui la composent.

Full automation of oenological fermentations and its application to the processing of must containing high sugar or acetic acid concentrations

Climate change and harvest date decisions have led to the evolution of must quality over the last decades. Increases in must sugar concentrations are among the most obvious consequences, quantitatively. Saccharomyces cerevisiae is a robust and acid tolerant organism. These properties, its sugar to ethanol conversion rate and ethanol tolerance make it the ideal production organism for wine fermentations. Unfortunately, high sugar concentrations may affect S. cerevisiae and lead to growth inhibition or yeast lysis, and cause sluggish or stuck fermentations. Even sublethal conditions cause a hyperosmotic stress response in S. cerevisiae which leads to increased formation of fermentation by-products, including acetic acid, which may exceed legal limits in some wines.