IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Abstract

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades. The finest Chardonnay wines impart a unique and complex bouquet. Multi-dimensional GC-O recently evidenced 5 pyrroles reminiscent of hazelnut. A quantitative method was developed, highlighting their significantly higher abundance in Chardonnay. However, they proved to be irrelevant in sensory terms, given the low amounts measured in wines compared to their detection threshold. Yet, these aromatic compounds could represent interesting chemical markers of Chardonnay wines. They could also prove to be precursors of thiols newly identified, called thiopyrroles. Thus, it seemed interesting to study the influence of some enological parameters on their concentration in wines. First, the quantitative method of pyrroles in wine was optimized. The validated method was applied to determine pyrroles content of 27 Chardonnay wines elaborated in different containers: stainless steel tank, new and old barrels. The concentration of 1-methylpyrrole-2-carboxaldehyde (MPC), 1-ethylpyrrole-2-carboxaldehyde (EPC), 2-acetyl-1H-pyrrole (AP), and pyrrole-2-carboxaldehyde (PC) were significantly higher in wines made in new barrels than in older barrels or in stainless steel tank. These results showed that these pyrroles can partly be brought by oak wood during the winemaking process. However, pyrroles were also observed in the stainless steel tank modality, which indicated that these compounds have also a varietal origin. Only the 1H-pyrrole content did not seem to be influenced by the type of container, suggesting a purely varietal origin of this compound.

Then, a quantitative method of pyrroles in oak wood extracts was developed in order to study the influence of several cooperage parameters on their content. The influence of three types of traditional toasting on pyrroles concentration in oak wood was studied. Significantly higher concentrations were found in toasted than in untoasted wood extracts for all four pyrroles, regardless of the toasting process. The temperature and the time of toasting were also studied. Results showed that MPC and EPC content increased according to the two parameters studied, whereas AP and PC content tend to decrease in oak wood with a long toasting process. This finding brings new insights on the understanding of the molecular origin of chemical markers of Chardonnay wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Gammacurta Marine1, Lavigne Valérie1, Moine Virginie2, Darriet Philippe1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
2Biolaffort, Bordeaux, France

Contact the author

Keywords

Chardonnay wine, hazelnut-like notes, chemical markers, oak wood

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Key genes in rotundone biosynthesis are affected by temperature, light, water supply, and nitrogen uptake

Rotundone accumulation and biosynthesis is a complicated process. Previous research highlighted that these phenomenons were affected under ecophysiological conditions by viticultural practices (e.g. defoliation or irrigation). Individually, these practices often impact several abiotic factors that are difficult to separate such as temperature, water or nitrogen status, or radiation. Such dissociation can be achieved under controlled environmental conditions using potted vines.

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

Adaptability of grapevines to climate change: characterization of phenology and sugar accumulation of 50 varieties, under hot climate conditions

Climate is the major factor influencing the dynamics of the vegetative cycle and can determine the timing of phenological periods. Knowledge of the phenology of varieties, their chronological duration, and thermal requirements, allows not only for the better management of interventions in the vineyard, but also to predict the varieties’ behaviour in a scenario of climate change, giving the wine producer the possibility of selecting the grape varieties that are best adapted to the climatic conditions of a certain terroir. In 2014, Symington Family Estates, Vinhos, established two grape variety libraries in two different places with distinctive climate conditions (Douro Superior, and Cima Corgo), with the commitment of contributing to a deeper agronomic and oenological understanding of some grape varieties, in hot climate conditions. In these research vineyards are represented local varieties that are important in the regional and national viticulture, but also others that have over time been forgotten — as well as five international reference cultivars. From 2017 to 2021, phenological observations have been made three times a week, following a defined protocol, to determine the average dates of budbreak, flowering and veraison. With the climate data of each location, the thermal requirements of each variety and the chronological duration of each phase have been calculated. During maturation, berry samples have been gathered weekly to study the dynamics of sugar accumulation, between other parameters. The data was analysed applying phenological and sugar accumulation models available in literature. The results obtained show significant differences between the varieties over several parameters, from the chronological duration and thermal requirements to complete the various stages of development, to the differences between the two locations, confirming the influence of the climate on phenology and the stages of maturation, in these specific conditions.

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

Isotopes to distinguish production system in Brazilian viticulture

Organic viticulture integrates practices aimed at foresting positive relationships among, vines, soil, and climate, with a focus on sustainability, social responsibility, and environmental protection. To safeguard production integrity, regulatory bodies worldwide conduct organic certifications in accordance with relevant regulations. Considering that agriculture practices influence the nitrogen, carbon and oxygen isotope composition, the study aimed to investigate the response of these isotopes in grape must cultivated by organic, biodynamic and conventional methods to distinguish between production systems.