IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Contribution of grape and oak wood barrels to pyrrole content in wines – Influence of several cooperage parameters

Abstract

Chardonnay is the world’s most planted white grape variety and has met a great commercial success for decades. The finest Chardonnay wines impart a unique and complex bouquet. Multi-dimensional GC-O recently evidenced 5 pyrroles reminiscent of hazelnut. A quantitative method was developed, highlighting their significantly higher abundance in Chardonnay. However, they proved to be irrelevant in sensory terms, given the low amounts measured in wines compared to their detection threshold. Yet, these aromatic compounds could represent interesting chemical markers of Chardonnay wines. They could also prove to be precursors of thiols newly identified, called thiopyrroles. Thus, it seemed interesting to study the influence of some enological parameters on their concentration in wines. First, the quantitative method of pyrroles in wine was optimized. The validated method was applied to determine pyrroles content of 27 Chardonnay wines elaborated in different containers: stainless steel tank, new and old barrels. The concentration of 1-methylpyrrole-2-carboxaldehyde (MPC), 1-ethylpyrrole-2-carboxaldehyde (EPC), 2-acetyl-1H-pyrrole (AP), and pyrrole-2-carboxaldehyde (PC) were significantly higher in wines made in new barrels than in older barrels or in stainless steel tank. These results showed that these pyrroles can partly be brought by oak wood during the winemaking process. However, pyrroles were also observed in the stainless steel tank modality, which indicated that these compounds have also a varietal origin. Only the 1H-pyrrole content did not seem to be influenced by the type of container, suggesting a purely varietal origin of this compound.

Then, a quantitative method of pyrroles in oak wood extracts was developed in order to study the influence of several cooperage parameters on their content. The influence of three types of traditional toasting on pyrroles concentration in oak wood was studied. Significantly higher concentrations were found in toasted than in untoasted wood extracts for all four pyrroles, regardless of the toasting process. The temperature and the time of toasting were also studied. Results showed that MPC and EPC content increased according to the two parameters studied, whereas AP and PC content tend to decrease in oak wood with a long toasting process. This finding brings new insights on the understanding of the molecular origin of chemical markers of Chardonnay wines.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Gammacurta Marine1, Lavigne Valérie1, Moine Virginie2, Darriet Philippe1 and Marchal Axel1

1UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
2Biolaffort, Bordeaux, France

Contact the author

Keywords

Chardonnay wine, hazelnut-like notes, chemical markers, oak wood

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

Red wine astringency: correlations between chemical and sensory features

Astringency is a crucial sensory attribute typically described as the drying and/or puckering sensation occurring after the consumption of tannin-rich foods and beverages. In this study, thirty-seven red wines from different varieties, origins and styles were evaluated, analyzing both chemical and sensory features. Principal Component Analysis was used for dimensionality-reduction and for correlating selected chemical parameters against astringency. The results showed that tannin content was the most important chemical parameter influencing overall astringency but more clearly the dryness sub-quality, followed by pH, titratable acidity and alcohol content.

Control of microbial development in wines elaborated by carbonic maceration

Carbonic Maceration (CM) winemaking is typically used in different European regions. But It is paradoxical that being a traditional processing system and widely used in many wineries, some of the phenomena that take place and the parameters that characterize them are barely known. In this vinification system the intact grape clusters are placed in a carbon dioxide (CO2) enriched medium, and they immediately change from a respiratory metabolism to an anaerobic fermentative metabolism called intracellular fermentation, which is carried out by grape enzymes. But some grapes located in the lower zone of the tank are crushed by the weight of the ones above and release must, which is fermented by yeasts.

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,