IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Abstract

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

A batch of 28 wines of Romanian varieties obtained in two regions well known for the production of wines from Romania (Dealu Mare and Cotnari) was analyzed from a physical-chemical point of view in order to discriminate them according to geographical origin and variety. The assessment of the carbon isotope ratio in ethanol extracted from wine provides relevant information to validate the geographical origin of wines. At the same time, the phenolic compounds in wine composition are of great importance, they contribute to the formation of characteristics such as taste, color and structure. The profile of these compounds is very different depending on grape variety, climatic conditions in each area and the applied wine-making technology. Therefore, a correlation between the carbon isotope ratio and the phenolic compounds profile can provide an overview of wines of a certain variety or region. Thus, the carbon isotope ratio (δ13C) was determined for all wines in this batch, which varied between -27.13 and -25.83 for wines from the Dealu Mare region and between -28.27 and -25.66 for wines from the Cotnari region. Also 12 phenolic compounds (gallic acid, protocathecic acid, caftaric acid, caffeic acid, coumaric acid, trans resveratrol, hydroxytyrosol, tyrosol, procyanidin dimer B1 and procyanidin dimer B2, catechin and epicatechin) were identified and quantified.
The δ13C measurements have been performed using an elemental analyser VarioMicroCube, Elementar coupled to an isotope ratio monitoring by mass spectrometry (Isoprime, Elementar) while the phenolic compounds content was analyzed by high-performance liquid chromatography (HPLC-PDA). In order to differentiate the wine samples according to the geographical region and the variety, statistical analysis was applied and thus a good discrimination of the wines according to the region and at the same time of the varieties within the same region was achieved.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cotea Valeriu1, Popirda Andreea1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Focea Elena Cornelia1, Nicola Sebastien2 and Noret Laurence2

1Iasi University of Life Sciences, Faculty of Horticulture, Department of Horticultural Technologies, 3rd M. Sadoveanu Alley, 700490 Iasi, Romania
2Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author

Keywords

wine, geographical origin, δ13C measurements, phenolic compounds analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PROBING GRAPEVINE-BOTRYTIS CINEREA INTERACTION THROUGH MASS SPECTROMETRY IMAGING

Plants in their natural environment are in continuous interaction with large numbers of potentially pathogenic and beneficial microorganisms. Depending on the microbe, plants have evolved a variety of resistance mechanisms that can be constitutively expressed or induced. Phytoalexins, which are biocidal compounds of low to medium molecular weight synthesized by and accumulated in plants as a response to stress, take part in this intricate defense system.1,2
One of the limitations of our knowledge of phytoalexins is the difficulty of analyzing their spatial responsiveness occurring during plant- pathogen interactions under natural conditions.

Genomic comparison on O. oeni: can l. hilgardii be a novel starter culture in malolactic fermentation?

Malolactic fermentation (MLF) the microbial bioconversion of L-malic acid into L-lactic acid, is a pivotal metabolic process that holds fundamental significance for the quality and organoleptic characteristics of some wines. Oenococcus oeni is considered to be the main player in this conversion, and it is globally used as a starter culture for mlf thanks to his capacity to tolerate the harsh wine environment.

Publication of the 3rd edition of the OIV ampelographic descriptors

Ampelography is aimed at describing the vine according to several characteristics, such as morphology, agronomic aptitudes, technological potential, and genetics. The description of varieties and species of vitis has long been the subject of numerous scientific and technical studies by eminent specialists for a long time, which have led the OIV to publish in 1983 the “descriptor list for grape varieties and vitis species”, a milestone among the OIV worldwide recognised codes.

Sensory evaluation of grape berries: predictive power for sensory properties of Sauvignon blanc, Riesling and Pinot noir wines

Sensory analysis of grape berries is a common tool to evaluate the degree of grape maturation and to make sound picking decisions.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties