IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Abstract

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

A batch of 28 wines of Romanian varieties obtained in two regions well known for the production of wines from Romania (Dealu Mare and Cotnari) was analyzed from a physical-chemical point of view in order to discriminate them according to geographical origin and variety. The assessment of the carbon isotope ratio in ethanol extracted from wine provides relevant information to validate the geographical origin of wines. At the same time, the phenolic compounds in wine composition are of great importance, they contribute to the formation of characteristics such as taste, color and structure. The profile of these compounds is very different depending on grape variety, climatic conditions in each area and the applied wine-making technology. Therefore, a correlation between the carbon isotope ratio and the phenolic compounds profile can provide an overview of wines of a certain variety or region. Thus, the carbon isotope ratio (δ13C) was determined for all wines in this batch, which varied between -27.13 and -25.83 for wines from the Dealu Mare region and between -28.27 and -25.66 for wines from the Cotnari region. Also 12 phenolic compounds (gallic acid, protocathecic acid, caftaric acid, caffeic acid, coumaric acid, trans resveratrol, hydroxytyrosol, tyrosol, procyanidin dimer B1 and procyanidin dimer B2, catechin and epicatechin) were identified and quantified.
The δ13C measurements have been performed using an elemental analyser VarioMicroCube, Elementar coupled to an isotope ratio monitoring by mass spectrometry (Isoprime, Elementar) while the phenolic compounds content was analyzed by high-performance liquid chromatography (HPLC-PDA). In order to differentiate the wine samples according to the geographical region and the variety, statistical analysis was applied and thus a good discrimination of the wines according to the region and at the same time of the varieties within the same region was achieved.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cotea Valeriu1, Popirda Andreea1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Focea Elena Cornelia1, Nicola Sebastien2 and Noret Laurence2

1Iasi University of Life Sciences, Faculty of Horticulture, Department of Horticultural Technologies, 3rd M. Sadoveanu Alley, 700490 Iasi, Romania
2Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author

Keywords

wine, geographical origin, δ13C measurements, phenolic compounds analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

REDUCING NITROGEN FERTILIZATION ALTERS PHENOLIC PROFILES OF VITIS VINIFERA L. CV. CABERNET GERNISCHT WINE OF YANTAI, CHINA

Nitrogen (N) fertilizer is important for grape growth and the quality of wine. It is essential to address the mismatch between N application and wine composition. Cabernet Gernischt (Vitis vinifera L.), as one of the main wine-grape cultivars in China, was introduced to Yantai wine region in 1892. This grape cultivar is traditionally used for quality dry red wine with fruit, spices aroma, ruby red and full-bodied wines. In order to regulate vine growth and improve grape and wine quality, Cabernet Gernischt grapevines were subjected to decreased levels of N treatments, compared to normal N supply treatment, during grape growing seasons of 2019 and 2020.

VOLATILE COMPOUNDS AND SENSORY PROFILE OF NEBBIOLO RED WINES TREATED WITH WOOD FORMATS ALTERNATIVE TO BARRELS

In winemaking, the use of wood products alternative to barrels, has become a useful tool for the achievement of numerous oenological objectives, including the fast release of desirable volatile and polyphenolic compounds, colour stabilization, and important economic advantages if compared to the traditional barrel production. Among a huge array of variables, the wood format, the vinification protocol, especially the moment of the infusion of the woods and the exposed surface area of the alternative woods are of relevant significance, since they may influence the speed and intensity of the aroma transfer from the wood to the wine defining different sensory profiles.

Deep learning based models for grapevine phenology

the phenological evolution is a crucial aspect of grapevine growth and development. Accurate detection of phenological stages can improve vineyard management, leading to better crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it solely relies on open and satellite data having global coverage without requiring any in-field data from weather stations or other sensors making the approach extensible to other areas.

Is it possible to approximate the technological and phenolic maturity of grapes by foliar application of elicitors?

The increase in the temperature and the more severe water stress conditions, trends observed in recent years as a consequence of climate change, are leading a mismatch between the technological and phenolic maturity of grapes

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.