IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Abstract

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

A batch of 28 wines of Romanian varieties obtained in two regions well known for the production of wines from Romania (Dealu Mare and Cotnari) was analyzed from a physical-chemical point of view in order to discriminate them according to geographical origin and variety. The assessment of the carbon isotope ratio in ethanol extracted from wine provides relevant information to validate the geographical origin of wines. At the same time, the phenolic compounds in wine composition are of great importance, they contribute to the formation of characteristics such as taste, color and structure. The profile of these compounds is very different depending on grape variety, climatic conditions in each area and the applied wine-making technology. Therefore, a correlation between the carbon isotope ratio and the phenolic compounds profile can provide an overview of wines of a certain variety or region. Thus, the carbon isotope ratio (δ13C) was determined for all wines in this batch, which varied between -27.13 and -25.83 for wines from the Dealu Mare region and between -28.27 and -25.66 for wines from the Cotnari region. Also 12 phenolic compounds (gallic acid, protocathecic acid, caftaric acid, caffeic acid, coumaric acid, trans resveratrol, hydroxytyrosol, tyrosol, procyanidin dimer B1 and procyanidin dimer B2, catechin and epicatechin) were identified and quantified.
The δ13C measurements have been performed using an elemental analyser VarioMicroCube, Elementar coupled to an isotope ratio monitoring by mass spectrometry (Isoprime, Elementar) while the phenolic compounds content was analyzed by high-performance liquid chromatography (HPLC-PDA). In order to differentiate the wine samples according to the geographical region and the variety, statistical analysis was applied and thus a good discrimination of the wines according to the region and at the same time of the varieties within the same region was achieved.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cotea Valeriu1, Popirda Andreea1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Focea Elena Cornelia1, Nicola Sebastien2 and Noret Laurence2

1Iasi University of Life Sciences, Faculty of Horticulture, Department of Horticultural Technologies, 3rd M. Sadoveanu Alley, 700490 Iasi, Romania
2Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author

Keywords

wine, geographical origin, δ13C measurements, phenolic compounds analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

High levels of copper and persistent synthetic pesticides in vineyard soils

Downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and bunch rot (Botrytis cinerea) are the most prevalent fungal diseases in viticulture.

Pesticide removal in wine with a physical treatment by molecular sieving

All along the winemaking process, conditioning and aging, wine is susceptible to be contaminated by different molecules. Contaminations can have various origins, related to wine microorganisms or as a result of an exogenous contamination. The aforementioned contamination of the wine can be caused by the migration of molecules from the materials in contact with the wine or by a contamination from exogenous molecules present in the air. Regardless of the source of the contamination, mainly two types of consequences can be observed.

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Effect of moderate wine consumption in animal models

In 1979, the so-called “french paradox” was proposed, that is, a correlation between wine consumption, a diet rich in saturated fats, and a low mortality from coronary heart disease. On the other hand, it has also been described that alcohol consumption has negative effects on aging and increases the risk of liver cirrhosis and cancer. However, both hypotheses are based on population studies that may present distortions due to multiple factors (geographic, diet, smoking, socioeconomic level, etc.).

Investigation of the biostimulant activity of naringenin on anthocyanins biosynthesis: from an explanatory transcriptomic approach on Gamay callus towards a future vineyard application

Context and purpose of the study. Anthocyanins are essential phenolic compounds in red wine, contributing significantly to colour intensity, stability, and sensory quality.