IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Carbon isotope ratio (Δ13C) and phenolic profile used to discriminate wines from Dealu mare and Cotnari regions (Romania)

Abstract

Regarding the food quality, authenticity is one of the most important issues in the context of ensuring the safety and security of consumers, but is also more important when it comes to wine (one of the most counterfeited foods in the world).

A batch of 28 wines of Romanian varieties obtained in two regions well known for the production of wines from Romania (Dealu Mare and Cotnari) was analyzed from a physical-chemical point of view in order to discriminate them according to geographical origin and variety. The assessment of the carbon isotope ratio in ethanol extracted from wine provides relevant information to validate the geographical origin of wines. At the same time, the phenolic compounds in wine composition are of great importance, they contribute to the formation of characteristics such as taste, color and structure. The profile of these compounds is very different depending on grape variety, climatic conditions in each area and the applied wine-making technology. Therefore, a correlation between the carbon isotope ratio and the phenolic compounds profile can provide an overview of wines of a certain variety or region. Thus, the carbon isotope ratio (δ13C) was determined for all wines in this batch, which varied between -27.13 and -25.83 for wines from the Dealu Mare region and between -28.27 and -25.66 for wines from the Cotnari region. Also 12 phenolic compounds (gallic acid, protocathecic acid, caftaric acid, caffeic acid, coumaric acid, trans resveratrol, hydroxytyrosol, tyrosol, procyanidin dimer B1 and procyanidin dimer B2, catechin and epicatechin) were identified and quantified.
The δ13C measurements have been performed using an elemental analyser VarioMicroCube, Elementar coupled to an isotope ratio monitoring by mass spectrometry (Isoprime, Elementar) while the phenolic compounds content was analyzed by high-performance liquid chromatography (HPLC-PDA). In order to differentiate the wine samples according to the geographical region and the variety, statistical analysis was applied and thus a good discrimination of the wines according to the region and at the same time of the varieties within the same region was achieved.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Cotea Valeriu1, Popirda Andreea1, Luchian Camelia Elena1, Colibaba Lucia Cintia1, Focea Elena Cornelia1, Nicola Sebastien2 and Noret Laurence2

1Iasi University of Life Sciences, Faculty of Horticulture, Department of Horticultural Technologies, 3rd M. Sadoveanu Alley, 700490 Iasi, Romania
2Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Institut Universitaire de la Vigne et du Vin – Jules Guyot, F-21000 Dijon, France

Contact the author

Keywords

wine, geographical origin, δ13C measurements, phenolic compounds analysis

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface.

Methyljasmonate versus nanomethyljasmonate: effect on monastrell nitrogen composition

The aim of this work was to evaluate the effect of preharvest application in Monastrell berries using two different types of applications: conventional treatments

A microbial overview of txakoli wine: the case of three appellations of origin

The Txakoli, a white wine produced in the Basque Country (North of Spain), has recently gained popularity due to wine quality improvement and increase in both acreages of production and wine consumption. The aim of this study was to characterize the chemical and microbiological differences between Txakoli wines made with grapes from different sites.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.