IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

Abstract

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1]. On the other hand, numerous studies on the characterization of grape varieties have shown some differences in their physical and chemical characteristics [2], and these may affect the outcome of the ultrasound treatment. Thus, our work focuses on the chromatic study of wines made from three different varieties (Monastrell, Cabernet Sauvignon and Syrah), to determine whether the use of US at a semi-industrial level facilitate the extraction of compounds of interest from the different varieties.Thereby, Monastrell, Syrah and Cabernet Sauvignon grapes were vinified. Four pilot scale trials were carried out for each variety: In two of them, ultrasound treatment was not applied in order to be used as controls (C). For the other two elaborations, the destemmed and crushed grape was subjected to ultrasound treatment (US) using a semi-industrial scale high power ultrasound equipment at a sonication frequency of 30kHz and a flow rate of 400 kg/h. Sonication was applied after destemming-crushing of the grapes for subsequent maceration. One of the control trials along with one of the US trials underwent a 3-day maceration, while the remaining two trials underwent a 7-day maceration of must-wine contact with the solid parts of the grapes. Physicochemical and chromatic parameters, as well as phenolic concentration and composition were analyzed by spectrophotometry and high-performance liquid chromatography respectively at the time of bottling.The results showed large differences between varieties. Wines obtained by sonicated grape of Syrah and Cabernet Sauvignon varieties showed greater color intensity and concentration of the different phenolic compounds analyzed both with 3 or 7 days of skin maceration. Moreover, those wines made from sonicated grapes and 3 days of skin maceration present similar chromatic characteristics of those wines made from control grapes and 7 days of maceration, which indicates that ultrasounds used on a semi-industrial scale can be of great interest in order to reduce maceration time in wineries, thus increasing their production capacity.Different behavior was observed in Monastrell wines, where no positive effect was observed in wines made from sonicated grapes and 3 days of maceration although wines obtained from Monastrell sonicated musts and 7 days of skin maceration showed a higher concentration of polymerized stable compounds and tannins than their respective controls, which would be of interest to improve the long-term stability of these wines. The possible reasons behind these differences would be discussed.

References

[1] OIV. (2019). Resolution OIV-OENO 616-2019. Paris, France: OIV.
[2] Ortega-Regules, A., Ros-García, J. M., Bautista-Ortín, A. B., López-Roca, J. M., & Gómez-Plaza, E. (2007). European Food Research and Technology, 227(1), 223–231.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Jurado Ricardo2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia
2Agrovin

Contact the author

Keywords

Ultrasound, Chromatics, Polyphenols, Maceration, Grape varieties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Fresh odorous terpenoids in wines, multiples pathways of limonene degradation.

Mint aromas in wine, which manifest as “cool” or “fresh” character, can originate from different chemical classes, one of which is the terpenoids. A broadly diverse, naturally occurring class of chemical compounds, terpenes possess wide applications across multiple industries due to their pharmaceutical, antiseptic, medical, and aromatic properties. Monoterpenes, a subclass of terpenoids, likewise play a major role in wine sensory perception. Within the monoterpenes, those possessing “mint” odor qualities have often been studied in the context of “vegetal” or “herbal” wine faults; however, their role in positive aromatic evolution is less understood. Yet an extensive 2015 study of older premium Bordeaux red wines identified mint as a contributing factor in quality bouquet development. From that point, it was necessary to investigate the origins of those monoterpenes as well as the chemical conditions required for their development during ageing. Those two key points could finally facilitate predicting the apparition of minty character in older wines based on their composition while young.
A principal contributor is the cyclic monoterpene limonene, which was isolated relatively early in grapes and wine. Not only does limonene itself possess a cool, fresh odor, it is also a precursor for, and possible derivative of, additional mint monoterpenes. Among the most commonly found monoterpenes, limonene and its derivatives can constitute the majority of the essential oils of citrus fruits, mint and herb plants, and coniferous trees. Many of these mint monoterpenes also occur in grapes and wine. With aromas ranging from woody and earthy to citrus to mint and herbaceous, their contribution to wine is potentially diverse and multi-faceted. While sometimes, found at concentrations below the sensory threshold, synergistic effects between these molecules could render them perceivable.
This review looks at limonene and its transformation as studied in different matrices, and potential parallels or analogues in wine. Moreover, within the complex kinetics of wine aging, the relative concentrations of mint monoterpenes appears to continue to evolve and change, with additional evidence from model wine solutions suggesting they may even revert to their originating precursors. Continued study of mint monoterpenes and their role in wine aromatics will contribute to a deeper understanding of the development of aging bouquet and the longevity of premium wines.

Influence of cell-cell contact on yeast interactions and exo-metabolome

Alcoholic fermentation is the main step for winemaking, mainly performed by the yeast Saccharomyces cerevisiae. But other wine yeasts called non-Saccharomyces may contribute to alcoholic fermentation and modulate the wine aroma complexity. The recurrent problem with the use of these non-Saccharomyces yeasts is their trend to die off prematurely during alcoholic fermentation, leading to a lack of their interesting aromatic properties searched in the desired wine. This phenomenon appears to be mainly due to interactions with S. cerevisiae. These interactions are often negatives but remain unclear because of the species and strain specific response. Among the non-Saccharomyces yeasts, Lachancea thermotolerans is a wine yeast naturally found in grape must and well known as a great L-lactic acid producer and an aromatic molecules enhancer, but its behavior during alcoholic fermentation can be completely different in co-fermentation with S. cerevisiae in function of strain used.

For a phenomenology of terroir. A consumers’ perspective

This study investigates the notion of terroir by applying a phenomenological approach, focusing on the subjective experience of consumers. We will consider how terroir is described by consumers in order to gauge their subjective viewpoint and understand their way of describing and defining this spatiality.

Estimating grapevine water status: a combined analysis of hyperspectral image and 3d point clouds

Mild to moderate and timely water deficit is desirable in grape production to optimize fruit quality for winemaking. It is crucial to develop robust and rapid approaches to assess grapevine water stress for scheduling deficit irrigation. Hyperspectral imaging (HSI) has the potential to detect changes in leaf water status, but the robustness and accuracy are restricted in field applications.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.