IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

High-power ultrasound for improving chromatic characteristics in wines. Does a varietal effect exist?

Abstract

The use of high-power ultrasound (US) during the winemaking process has been extensively studied at laboratory scale in order to demonstrate its possible use to improve the extraction of compounds of interest. However, studies on semi-industrial and industrial scale are needed to confirm this positive effect, since the International Organization of Vine and Wine approved its industrial use in 2019 [1]. On the other hand, numerous studies on the characterization of grape varieties have shown some differences in their physical and chemical characteristics [2], and these may affect the outcome of the ultrasound treatment. Thus, our work focuses on the chromatic study of wines made from three different varieties (Monastrell, Cabernet Sauvignon and Syrah), to determine whether the use of US at a semi-industrial level facilitate the extraction of compounds of interest from the different varieties.Thereby, Monastrell, Syrah and Cabernet Sauvignon grapes were vinified. Four pilot scale trials were carried out for each variety: In two of them, ultrasound treatment was not applied in order to be used as controls (C). For the other two elaborations, the destemmed and crushed grape was subjected to ultrasound treatment (US) using a semi-industrial scale high power ultrasound equipment at a sonication frequency of 30kHz and a flow rate of 400 kg/h. Sonication was applied after destemming-crushing of the grapes for subsequent maceration. One of the control trials along with one of the US trials underwent a 3-day maceration, while the remaining two trials underwent a 7-day maceration of must-wine contact with the solid parts of the grapes. Physicochemical and chromatic parameters, as well as phenolic concentration and composition were analyzed by spectrophotometry and high-performance liquid chromatography respectively at the time of bottling.The results showed large differences between varieties. Wines obtained by sonicated grape of Syrah and Cabernet Sauvignon varieties showed greater color intensity and concentration of the different phenolic compounds analyzed both with 3 or 7 days of skin maceration. Moreover, those wines made from sonicated grapes and 3 days of skin maceration present similar chromatic characteristics of those wines made from control grapes and 7 days of maceration, which indicates that ultrasounds used on a semi-industrial scale can be of great interest in order to reduce maceration time in wineries, thus increasing their production capacity.Different behavior was observed in Monastrell wines, where no positive effect was observed in wines made from sonicated grapes and 3 days of maceration although wines obtained from Monastrell sonicated musts and 7 days of skin maceration showed a higher concentration of polymerized stable compounds and tannins than their respective controls, which would be of interest to improve the long-term stability of these wines. The possible reasons behind these differences would be discussed.

References

[1] OIV. (2019). Resolution OIV-OENO 616-2019. Paris, France: OIV.
[2] Ortega-Regules, A., Ros-García, J. M., Bautista-Ortín, A. B., López-Roca, J. M., & Gómez-Plaza, E. (2007). European Food Research and Technology, 227(1), 223–231.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Jurado Ricardo2 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia
2Agrovin

Contact the author

Keywords

Ultrasound, Chromatics, Polyphenols, Maceration, Grape varieties

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Intravarietal diversity: an opportunity for climate change adaptation

Merlot grapevine is the second wine cultivar most planted in the world and especially in the Bordeaux wine region. This cultivar has many advantages in producing high quality wine; however, in the last decade, climate change has increased the sugar concentration in berries at harvest and shortened the maturation cycle. If this has been up to now a great opportunity to improve wine quality profile, we are touching the tipping point. High sugar concentration at harvest induces high alcool content in wine which can negatively impact wine quality. There are many viticultural and oenological practices possible to limit this effect. In this study we focus on plant material through intra-varietal diversity of Merlot cultivar.

The commercial yeast strain as a significant source of variance for tyrosol and hydroxytyrosol in white wine

Tyrosol (TYR) and hydroxytyrosol (HYT) are bioactive phenols present in olive oil and wine, basic elements of the Mediterranean diet. TYR is reported in the literature for its interesting antioxidant, cardioprotective and anti-inflammatory properties. In wine, its concentration can reach values as high as about 40 mg/L
[Pour Nikfardjam et al. 2007] but, more frequently, this phenol – derived from yeast metabolism of tyrosine during fermentation – is present at lower levels, generally higher in red wines compared to whites. HYT was measured for the first time by Di Tommaso et al. [1998] in Italian wines – with maximum values of 4.20 mg/L and 1.92 mg/L for red and white wines, respectively – while definitely lower concentrations have been found later in Greek samples.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

Tutela legale delle denominazioni di origine nel mondo (con aspetti applicativi)

Uno degli aspetti più importanti nel commercio internazionale dei vini a denominazione è quello del riconoscimento dei diritti di esclusiva garantiti sui e dal territorio geografico d’o­rigine. Al fine di cautelarsi nei confronti della sempre più agguerrita concorrenza mondiale, è opportuno adottare adeguate protezioni ufficiali e legali delle denominazioni che possono derivare sia dalla “naturalità” del prodotto stesso che dalla “originalità” più particolare.