IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Abstract

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue. Their composition and organization in the cell wall matrix differ according cultivars and also play an important role in the defense mechanisms against plant pathogen and wounding. During grape ripening, important structural and biochemical changes are modifying the cell wall integrity due to pectolytic enzymes such as pectin methylesterases and polygalacturonases which participate to the cell wall weakening and increase the grape susceptibility to pathogens such as Botrytis cinerea.This work investigated the distribution of pectic polysaccharides in the cell wall according to their molecular weight and the localization of pectins (homogalacturonans) highly and low methyl-esterified in grape skin tissue throughout the berry development of the two main Champagne cultivars (Vitis vinifera cv. Pinot noir and Chardonnay), in relation with in vitro Botrytis cinerea susceptibility tests. The skin cell wall composition was evaluated by size exclusion chromatography (SEC) and the pectin localization by immunogold labelling.The comparative study between the two main grape cultivars from Champagne region highlights differences in pectin composition, Chardonnay skins are characterized by less pectic polysaccharides of high molecular weight (HMW) related to a lower susceptibility to Botrytis cinerea. The pectins cellular localization showed that pectins highly methyl-esterified are more important in Pinot noir cell walls than Chardonnay ones, suggesting different mechanisms of cell walls degradation between Chardonnay and Pinot noir skins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Andre Marie1, Lacampagne Soizic1, Barsacq Audrey1, Mercier Laurence2 and Gény-Denis Laurence1

1Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV MHCS, Epernay, 33882, Villenave d’Ornon, France
2MHCS, Epernay, France

Contact the author

Keywords

skin, ripening, pectins, SEC, Champagne

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Chemical affinity and binding capacity between pre-purified Cabernet-Sauvignon/Merlot anthocyanins and salivary proteins monitored by UHPLC Q-ToF MS analysis

Apart from pro(antho)cyanidins and tannins, other phenolic compounds in wine or grapes have been shown to interact with salivary proteins and may contribute to overall sensory in-mouth sensations [1, 2]. Anthocyanins are the dominant phenolics in red wine and grape skin [3] , so it is expected that they come into contact and interact with salivary proteins after ingestion.

EVOLUTION OF CHEMICAL AND SENSORIAL PROFILE OF WINES ELABORATED WITH THEIR OWN TOASTED VINE-SHOOTS AND MICRO-OXYGENATION

The positive contribution of toasted vine-shoots (SEGs, Shoot from vines – Enological – Granule) used in winemaking to the chemical and sensory profile of wines has been widely proven. However, the combination of this new enological tool with other winemaking technologies, such as micro-oxygenation (MOX), has not been studied so far. It is known that micro-oxygenation is used in wineries to stabilizes color, improves structure or combining with oak alternatives products to achieve a more effective aroma integration of wines. For that, its implementation in combination with SEGs could result in differentiated wines.

Comprehensive lipid profiling of grape musts: impact of static settling

Lipids are crucial in alcoholic fermentation, influencing yeast metabolism by providing nutrients and modulating membrane composition [1]. They also serve as precursors to aromatic compounds shaping wine sensory profiles [2].

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.