IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Abstract

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue. Their composition and organization in the cell wall matrix differ according cultivars and also play an important role in the defense mechanisms against plant pathogen and wounding. During grape ripening, important structural and biochemical changes are modifying the cell wall integrity due to pectolytic enzymes such as pectin methylesterases and polygalacturonases which participate to the cell wall weakening and increase the grape susceptibility to pathogens such as Botrytis cinerea.This work investigated the distribution of pectic polysaccharides in the cell wall according to their molecular weight and the localization of pectins (homogalacturonans) highly and low methyl-esterified in grape skin tissue throughout the berry development of the two main Champagne cultivars (Vitis vinifera cv. Pinot noir and Chardonnay), in relation with in vitro Botrytis cinerea susceptibility tests. The skin cell wall composition was evaluated by size exclusion chromatography (SEC) and the pectin localization by immunogold labelling.The comparative study between the two main grape cultivars from Champagne region highlights differences in pectin composition, Chardonnay skins are characterized by less pectic polysaccharides of high molecular weight (HMW) related to a lower susceptibility to Botrytis cinerea. The pectins cellular localization showed that pectins highly methyl-esterified are more important in Pinot noir cell walls than Chardonnay ones, suggesting different mechanisms of cell walls degradation between Chardonnay and Pinot noir skins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Andre Marie1, Lacampagne Soizic1, Barsacq Audrey1, Mercier Laurence2 and Gény-Denis Laurence1

1Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV MHCS, Epernay, 33882, Villenave d’Ornon, France
2MHCS, Epernay, France

Contact the author

Keywords

skin, ripening, pectins, SEC, Champagne

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

L’effet du climat viticole sur la typicité des vins rouges: caractérisation au niveau des régions viticoles Ibéro-Américaines

Il n’existe presque pas d’études qui caractérisent l’effet du climat viticole sur la typicité des vins en considérant les différents types de climats à l’échelle mondiale. Cette étude fait partie d’un projet CYTED de zonage vitivinicole. L’objectif a été de caractériser l’effet du climat viticole sur la typicité des vins sur une macro région viticole du monde.

Cover crops competition for water in vineyards: case studies in mediterranean terroirs

Vineyard cover cropping is a cultural practice widely used in many of the world’s winegrowing regions being one of the most recommended practices to face climate changes and to promote vineyard environmental sustainability.

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.

Measurement of synthetic solutions imitating alcoholic fermentation by dielectric spectroscopy

Having the possibility to use a wide spectrum of elecromagnetic waves, dielectric spectroscopy is a technique commonly used for electrical characterization of dielectrics or that of materials with high energy storage capacity, just to name a few. Based on the electrical excitation of dipoles (polymer chains or molecules) or ions in relation to the characteristics of a weak external electric field, this method allows the measurement of the complex permittivity or impedance of polarizable materials, each component having a characteristic dipole moment.In recent years, the food industry has also benefited from the potential offered by this technique, whether for the evaluation of fruit quality or during the pasteurization of apple juice [1-3]. As the tests are fast and do not destroy the products, dielectric spectroscopy proved to be an experimental tool suitable for online measurements as well as long-term monitoring.