IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Abstract

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue. Their composition and organization in the cell wall matrix differ according cultivars and also play an important role in the defense mechanisms against plant pathogen and wounding. During grape ripening, important structural and biochemical changes are modifying the cell wall integrity due to pectolytic enzymes such as pectin methylesterases and polygalacturonases which participate to the cell wall weakening and increase the grape susceptibility to pathogens such as Botrytis cinerea.This work investigated the distribution of pectic polysaccharides in the cell wall according to their molecular weight and the localization of pectins (homogalacturonans) highly and low methyl-esterified in grape skin tissue throughout the berry development of the two main Champagne cultivars (Vitis vinifera cv. Pinot noir and Chardonnay), in relation with in vitro Botrytis cinerea susceptibility tests. The skin cell wall composition was evaluated by size exclusion chromatography (SEC) and the pectin localization by immunogold labelling.The comparative study between the two main grape cultivars from Champagne region highlights differences in pectin composition, Chardonnay skins are characterized by less pectic polysaccharides of high molecular weight (HMW) related to a lower susceptibility to Botrytis cinerea. The pectins cellular localization showed that pectins highly methyl-esterified are more important in Pinot noir cell walls than Chardonnay ones, suggesting different mechanisms of cell walls degradation between Chardonnay and Pinot noir skins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Andre Marie1, Lacampagne Soizic1, Barsacq Audrey1, Mercier Laurence2 and Gény-Denis Laurence1

1Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV MHCS, Epernay, 33882, Villenave d’Ornon, France
2MHCS, Epernay, France

Contact the author

Keywords

skin, ripening, pectins, SEC, Champagne

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices.

Indice bioclimatique de qualité Fregoni

La viticulture dans le monde est sous l’étroite dépendance des conditions climatiques. En effet, la culture de la vigne est concentrée entre 30° et 50° de latitude Nord et 30° à 40° de latitude Sud

Vegetative propagation during domestication – rooting ability of wild grapevines

The origins of plant propagation trace back to the moment of early humans’ transition from a nomadic existence to settled agricultural societies, cultivating their food.

An evaluation of the physiological responses of young grapevines planted and maintained under water constraint 

The aim of this ongoing study is to evaluate the degree of adaptability of grapevine scion:rootstock combinations to different conditions of water constraint. Here we present results from the young vine development phase, using three scenarios of water constraint that were implemented from planting. The experimental vineyard was established in 2020 and the data presented will cover the 2021/2022 and 2022/2023 seasons. The experiment consisted of the cultivars Pinotage (PIN), Shiraz (SHI) and Cabernet Sauvignon (CAB), grafted on two rootstocks, Richter 110 (R110) and USVIT-8-7 (US87).

Carbohydrate dynamics in Shiraz to determine seasonal allocation to the perennial and annual parts in respect to climatic challenges

The dynamic changes of non-structural carbohydrates (NSC) in grapevines during the growing season is driven by phenological events and environmental factors.