IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Biochemical characterization of grape skin cell wall during ripening in relation to Botrytis cinerea susceptibility of two Champagne cultivars

Abstract

Pectins or pectic polysaccharides are one of the major components in grape skin cell wall, they contribute to physiological processes which determine the integrity and rigidity of grape skin tissue. Their composition and organization in the cell wall matrix differ according cultivars and also play an important role in the defense mechanisms against plant pathogen and wounding. During grape ripening, important structural and biochemical changes are modifying the cell wall integrity due to pectolytic enzymes such as pectin methylesterases and polygalacturonases which participate to the cell wall weakening and increase the grape susceptibility to pathogens such as Botrytis cinerea.This work investigated the distribution of pectic polysaccharides in the cell wall according to their molecular weight and the localization of pectins (homogalacturonans) highly and low methyl-esterified in grape skin tissue throughout the berry development of the two main Champagne cultivars (Vitis vinifera cv. Pinot noir and Chardonnay), in relation with in vitro Botrytis cinerea susceptibility tests. The skin cell wall composition was evaluated by size exclusion chromatography (SEC) and the pectin localization by immunogold labelling.The comparative study between the two main grape cultivars from Champagne region highlights differences in pectin composition, Chardonnay skins are characterized by less pectic polysaccharides of high molecular weight (HMW) related to a lower susceptibility to Botrytis cinerea. The pectins cellular localization showed that pectins highly methyl-esterified are more important in Pinot noir cell walls than Chardonnay ones, suggesting different mechanisms of cell walls degradation between Chardonnay and Pinot noir skins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Andre Marie1, Lacampagne Soizic1, Barsacq Audrey1, Mercier Laurence2 and Gény-Denis Laurence1

1Unité mixte de recherche Œnologie, UMR 1366 Université de Bordeaux, INRAE, Bordeaux INP, ISVV MHCS, Epernay, 33882, Villenave d’Ornon, France
2MHCS, Epernay, France

Contact the author

Keywords

skin, ripening, pectins, SEC, Champagne

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Single plant oenotyping: a novel approach to better understand the impact of drought on red wine quality in Vitis x Muscadinia genotypes

Adopting disease-tolerant varieties is an efficient solution to limit environmental impacts linked to pesticide use in viticulture. In most breeding programs, these varieties are selected depending on their abilities to tolerate diseases, but little is known about their behaviour in response to abiotic constraints.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Stable or dynamic? How phenotypic plasticity could be key to select for grapevine adaptation?

Climate change will require the adaptation of agricultural systems and among the different means of adaptation, changing plant material is a promising strategy. In viticulture, different levels of diversity are currently exploited: clonal and varietal diversity for rootstocks and scions. A huge quantity of research aims to evaluate different genotypes in different environmental conditions to identify which ones are the best adapted and the most tolerant to future environmental conditions.

The role of rootstock and its genetic background in plant mineral status

In this video recording of the IVES science meeting 2025, Marine Morel (EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, Villenave-d’Ornon, France) speaks about the role of rootstock and its genetic background in plant mineral status. This presentation is based on an original article accessible for free on OENO One.

L’Appellation d’Origine Contrôlée « Huile Essentielle de Lavande de Haute Provence »

Depuis des siècles, la lavande est utilisée pour son parfum et pour ses vertus thérapeutiques naturelles.