IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Vitamins in grape must: let’s lift a corner of the veil

Vitamins in grape must: let’s lift a corner of the veil


Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades. While those investigations allowed for a primary estimation of the vitaminic contents of musts and wines, no quantification of their vitameric distribution has ever been performed. Here, in order to elucidate a still-obscure facet of wine composition, 19 different vitamers from 8 different vitaminic groups (B1, B2, B3, B5, B6, B8, B9, C) have been simultaneously and directly analyzed by an optimized rapid HPLC procedure in 85 white grape musts from different geographical origins, varieties, as well as vintages. This novel insight on must composition reflects the overall must diversity, since their vitameric contents vary highly between musts. Plus, this investigation provided leads for characterization of the matrix, since, notably, distinctive patterns could be observed in regards to the musts area of cultivation. Such an analytical tool allows for a precise estimation of the must contents in the different water-soluble vitamers, to provide with a
refined management of winemaking and avoid significant deficiencies that could occur during fermentation, or as a result of winemaking practices. As such, the impact held by some oenological practices on vitamins has also been investigated, and proved to have no significant effect. Overall, this offers ground for further determination of the vitamin significance in oenology, and provide a new tool for alcoholic fermentation management.


Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article


Evers Marie Sarah1,2, Alexandre Hervé1, Morge Christophe2, Sparrow Celine2, Gobert Antoine2 and Roullier-Gall Chloé1

1Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne, 2 rue Claude Ladrey, 21000 Dijon, France
2Sofralab SAS, 79 avenue A.A, Av. Alfred Anatole Thévenet, 51530 Magenta, France

Contact the author


vitamins, grape must, HPLC, oenology, winemaking


IVAS 2022 | IVES Conference Series


Related articles…

Use of antisense RNA technology to modulate gene expression in Œnococcus oeni

Œnococcus oeni is a wine-associated lactic acid bacterium performs the malolactic fermentation, which improves the taste and aromatic complexity of many wine.

Settling precocity and growth kinetics of the primary leaf area: two indicative parameters of grapevine behaviour

Le comportement de la vigne en terme de fonctionnement thermique et hydrique, influe de manière directe sur la qualité des baies de raisin. L’effet du terroir peut être perçu à travers l’étude de paramètres tels que la précocité, la mise en place de la surface foliaire ou la vigueur. Une expérimentation a été conduite en Val de Loire sur le cépage chenin dans le but de mieux comprendre le rôle des variables liées au terroir sur la croissance et le développement de la vigne et in fine sur la qualité des baies.

Understanding the impact of rising temperatures due to climate change on aromatic compositions in Malbec wines from Mendoza, Argentina

Mendoza is one of Argentina’s most important and outstanding wine regions producing the renowned Malbec wines due to its optimal soil and weather conditions. However, the effects of 21st-century climate change would negatively impact Malbec wines quality. This study investigated the effect of temperature increase and the impact of plant hormone abscisic acid (ABA) used to mitigate the negative effect of temperature increase on Malbec wines aromatic composition through GC-MS. Four treatments were applied on vines at field condition: Control, Control + 3 ºC, ABA and ABA + 3 ºC.

Mathematical modeling of fermentation kinetics: a tool to better understand interactions between Torulaspora delbrueckii and Saccharomyces cerevisiae in mixed cultures

Nowadays the use of Torulaspora delbrueckii is more and more common in winemaking. However, its behavior in presence of Saccharomyces cerevisiae is not always predictable.


Smoke impact in wines is caused by a wide range of volatile phenols found in wildfire smoke. These compounds are absorbed and accumulate in berries, where they may also become glycosylated. Both volatile and glycosylated forms eventually end up in wine where they can cause off-flavors. The impact on wine aroma is mainly attributed to volatile phenols, while in-mouth hydrolysis of glycosylated forms may be responsible for long-lasting “ashy” aftertastes (1).