IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Abstract

Extraction of anthocyanins and tannins have been studied for two grape varieties, Carignan and Grenache, two maturation levels and two vintages, in model solutions and in wines, using UHPLC-MS/MS in the MRM mode  and HPSEC. The cell wall polysaccharides were characterized using the neutral sugar composition after depolymerization and the comprehensive microarray polymer profiling (CoMPP).
Carignan was richer than Grenache in anthocyanins for both years. Berry anthocyanins were mainly non acylated and para coumaroylated.  In Carignan, p.coumaroylated were found in higher quantities than non acylated. Maturation led to an increase of quantities of non acylated anthocyanins for Carignan and Grenache, and a slight decrease of p.coumaroylated for Carignan. No significant difference of their tannin composition was observed.
The extraction yields of non acylated anthocyanins in model solutions and in wines were higher than those of tannins. Percents of recoveries of p.coumaroylated anthocyanins were lower than non acylated anthocyanins and tannins, and lower in model solutions than in wine. Recoveries were higher in 2019 than in 2018.
Correlations were observed between non acylated, p.coumaroylated and tannins concentrations in model solutions and wines, not in berries. P.coumaroylated anthocyanins recoveries were lower in model solutions than in wines. The cell wall structure was related to the mechanism of extraction. Extraction of anthocyanins and tannins was correlated to high levels of homogalacturonans partially esterified in the skins (e.g. LM19-CDTA-skin) but low levels in the pulps, and by low levels of extensins in the skin(e.g. JIM11-NaOH-pulp) but high levels in the pulps. Arabinose % was correlated positively, mannose % and glucose % negatively to the recovery of all anthocyanins and tannins in model solution, to p.coumaroylated anthocyanins only in wines. These results trigger questions.
Firstly, the lower recovery of p.coumaroylated anthocyanins may be due to the hydrophobicity of the coumaroyl unit, modifying their interactions with other polyphenols and/or with the cell walls.
Secondly, p.coumaroylated anthocyanin recoveries were very different in model solutions and in wines. Pulp, seeds and/or yeasts present in wines should play a role in their extractibility.
Thirdly, anthocyanins/tannins extracted in model solutions/wines were correlated to several parameters describing the cell walls, among them their compositions measured by the neutral sugars and their structures measured by the CoMPPs. To conclude, this study confirms with more details the major role that play cell walls in the extraction of anthocyanins and tannins.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Boulet Jean-Claude1, Abi-Habib, Carrillo Stéphanie, Roi Stéphanie, Verbaere Arnaud, Meudec Emmanuelle, Rattier Anaïs, Ducasse Marie-Agnès, Jorgensen Bodil, Hansen Jeanett, Le Gall Sophie, Poncet-Legrand Céline, Cheynier Véronique, Doce Thierry and Verneht Aude

1SPO, INRAE, Univ.Montpellier, Institut Agro Montpellier Supagro, 34070 Montpellier, Campus Supagro, Bâtiment 28, 2 Place Viala, 34060 Montpellier cedex 2, France
2INRAE, PROBE infrastructure, PFP facility, 34070 Montpellier, Campus Supagro, Bâtiment 28, 2 Place Viala, 34060 Montpellier cedex 2, France

Contact the author

Keywords

extraction, polyphenols, polysaccharides, comprehensive microarrray polymer profiling, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Metabolomic profiling of botrytized grape berries: unravelling the dynamic chemical transformations during noble rot

Botrytis cinerea, a fungal pathogen commonly known as grey mold, which under specific climatic conditions can develop into a desirable form known as noble rot. In this process the fungus penetrates the grape skin, allowing water evaporation and concentration of sugars and flavors, while profoundly affects the metabolite composition of grapes, leading to the production of unique and desirable compounds in the resulting wines. The result is a unique and complex wine with a luscious sweetness, heightened aromatics, and a distinct character.

Aroma characterization of aged cognac spirits: contribution of volatile terpenoid compounds

Cognac spirit aromas result from the presence of a wide variety of volatile odorous compounds associated with the modalities of distilled spirit elaboration and during aging. Indeed, these odorous compounds play an essential role in the finesse and complexity of the aged Cognac.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

Viticultural Climatic Zoning and Digital Mapping of Rio Grande do Sul – Brazil, using Indices of the Géoviticulture MCC System

The State Rio Grande do Sul is the main producer of Brazilian fine wines, with four viticultural regions. The objective is the characterization of the viticultural climatic potential of the State (total surface of 281.749 km2). The methodology use the Géoviticulture Multicriteria Climatic Classification System (Géoviticulture MCC System), based on three climatic indices – Dryness Index (DI), Heliotermal Index (HI) and Cool Night Index (CI).

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

The impact of cell wall composition of the extraction of anthocyanins and tannins from grape berries

Abstract

Content of the article

References

Section for all references

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: typeofthepublication

Authors

author1, author2, author3

Presenting author

Description

List of affiliations ¹ ² ³

Contact the author

Email address (with mailto: link)

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of post-veraison irrigation dose on Cabernet-Sauvignon vines in a dry and warm season in Valencia, Spain

In the old-world viticulture, there is a common but most often not scientifically proved consideration that supplemental irrigation should detrimentally affect berry and wine composition. In the semi-arid

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Territorial delimitation of viticultural “Oltrepo Pavese (Lombardy)” using grape ripening precocity

L’Oltrepò Pavese est une zone de collines de la Lombardie, région située au nord de l’Italie avec un vignoble qui s’étend sur près de 15 000 ha. Cette zone représente la plus grande aire de production de la région et une des A.O.C. les plus étendues de tout le pays. Les cépages les plus cultivés, même historiquement, sont autochtones : la Barbera et la Croatina utilisés pour la production de vin rouge «Oltrepò» et le Pinot noir pour la production de vins mousseux. Pour le zonage viticole de cette A.O.C., il a été pris en considération: le climat, les sols, les caractéristiques viti-vinicoles.

Merano Wine Festival 2020

IVES was a partner of the Merano Wine Festival (innovation section), a digital event held from 6 to 10 November 2020. During this festival participants attended scientific conferences on cutting-edge topics for the wine industry. Some of the topics covered have been selected from our journals

The key role of vineyard parcel in modifying flavor compounds of Cabernet Sauvignon grapes

To produce premium wines in a specific region is the goal of local oenologists. This study aimed to investigate the influence of soil properties on the flavoromics of Cabernet Sauvignon grapes to provide a better insight into single-vineyard wines. Six commercial Cabernet Sauvignon vineyards were selected in the Manas region to collect berries at three harvest ripeness in three seasons (2019–2021). The six vineyards had little difference in mesoclimate conditions while varying greatly in soil composition.