Terroir 2016 banner
IVES 9 IVES Conference Series 9 Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Impact of defoliation on leaf and berry compounds of Vitis vinifera L. Cv. Riesling investigated using non-destructive methods)

Abstract

Climate change has a strong impact on the earlier onset of important phenological stages and plant development in viticulture. Hence, the adaptation of plant management is important to reply to climate related changes on a seasonal or long-term scale. In particular, a change in precipitation and higher temperatures entails the risk negatively impacting on fruit quality. An experiment was conducted where different canopy management strategies were applied to Riesling grapevines (Vitis vinifera L. cv. Riesling) planted in Winkel (Rheingau, Germany). Leaf removal at different canopy positions using various methods (e.g. manual vs. mechanical defoliation practices) led to a reduced photosynthetic active leaf area. Through modifications of the leaf area to fruit weight ratio, the berry ripening can be altered. Leaf removal of the bunch zone impacts fruit parameter and most importantly fruit health. Four different defoliation practices within a VSP trellis system were compared to a non-defoliated control during three growing seasons in an organic treated site: mechanical defoliation above the canopy (MDC); manually defoliation prior to flowering (DpF); defoliation of the bunch zone past flowering: Bunch zone defoliation (BZD) either suction fan plucking (EB490® Binger Seilzug, Germany) and mechanical defoliation or pulsation jetting of compressed air (DmS) (Siegwald®, Germany). Non-destructive measurements using a polyphenolmeter (Multiplex®3, Force-A, Orsay, France) were performed on leaves and berries to estimate the nutrition and ripening stage.

The chlorophyll index showed the lowest values for BZD and highest for control leaves. Additionally, on-the-go measurements were established to determine leaf components achieving vineyard maps in response to nitrogen or chlorophyll index. Furthermore, the data can be used for zoning the vineyard and harvest based on such mapping. When the severity of Botrytis cinerea was compared to control all treatments showed lower disease pressure (BZD -5.3 %, DpF -3.0 % and DmS -2.3 % respectively). Yield differed between -16 % (MDC), -8% DpF, -1 % (DmS) and +1 % (BZD) compared to the control having the highest (1.4 g) and BZD the lowest (1.1 g) single berry weight with a lower bunch compactness in 2014. Defoliation treatments influence the number of cluster per vine, where the lowest were found for DpF plants, accompanied with the lowest yield per single vine. These results help understanding the canopy characteristics and offer an opportunity to adapt the vineyard management strategies to seasonal changes.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

Susanne TITTMANN, Vanessa STOEBER, Manfred STOLL

Geisenheim University, Department of general and organic viticulture, Von – Lade – Str. 1 D-65366 Geisenheim

Contact the author

Keywords

defoliation, non-invasive determination of leaf components, Multiplex, Plasmopara viticola, Vitis vinifera

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Changing the scale of characterization of a wine area: from a single protected designation of origin to a vineyard Loire Valley observatory (viLVO)

Terroir is increasingly important today in wine markets. In a large wine production area such as the Loire Valley, the whole territories/terroirs can be distinguished according to different combinations of geological, soil, climatic and landscape features but are also characterized by their differences and likenesses in terms of combinations of terroir units and practices.

Colour assessment of port wines using colorimetric and spectrophotometric methods

Colour is an important quality parameter in wines and is the result of a complex mixture of pigments
(including anthocyanins and their derivatives, quinones, xanthyllium compounds, etc.). Red wine colour changes over time as pigments react between themselves and with other wine macromolecules
(particularly polyphenols). During wine tasting, colour is normally assessed on the outer rim of the wine profile in a tilted glass, since most wines are too opaque to be analysed in the middle of the glass. Therefore, depending on the depth of observation considered, the perception of wine colour can be different.

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Are dicysteinyl polysulfanes responsible for post-bottling release of hydrogen sulfide?

Hydrogen sulfide (H2S) has a significant impact on wine aroma attributes and wine quality when present at concentrations above its aroma threshold of 1.1 to 1.6 μg/L.

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.