IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

Abstract

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality. Unfortunately, little attention is paid by the breeders to the adaptation of these varieties to climatic changes and to the aromatic potential such as thiol precursors. Indeed, varietal thiols (3-sulfanylhexan-ol (3SH) and its acetate or the 4-methyl-4-sulfanylpentan-2-one (4MSP)) are very powerful aromatic compounds in wines coming from odorless precursors in grapes and could contribute to the typicity of such varieties. This study aimed to characterize 6 new resistant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to Syrah to (i) quantify the thiol precursors in the fruits and to (ii) evaluate the influence of water deficit (WD) imposed on field-grown vines on these molecules. Grapes were picked-up at the arrest of phloem unloading to objectify the sampling at a precise physiological landmark and analyzed by LC-MS/MS. Six thiol precursors were quantified by isotopic dilution across all samples and only 3 were clearly identified and quantified: the glutathionylated (G3SH), cysteinylated (Cys3SH) and one dipeptidic precursors of 3SH (CysGly3SH). For all varieties, G3SH contents represented between 75 and 100% of the aromatic potential, followed by Cys3SH (0-16%) and finally the CysGly3SH (0-13%). The absolute concentrations of G3SH ranged from 31 to 132 µg/kg for white varieties and from 68 to 466 µg/kg for red ones. Surprisingly, 3176N had exceptional G3SH levels that can reach 466 µg/kg which corresponded to nearly 777 µg/L in volume concentration. The pedigree of this variety which includes Grenache as a progenitor could explain the high levels of thiol precursors as observed in the Rosé wines of Provence, a type of wines also characterized by high levels of varietal thiols. Whatever the variety, we did not find marked effects of WD on the contents in thiol precursors when expressed in µg/kg. When expressed in µg/berry to reflect the real impact of WD on rate of metabolite accumulation per organ, 3176N and Artaban showed significant differences between moderate and high WD treatments (p-value < 0.05, less amount of thiol precursors in WD grapes). Analyzing thiol precursors and more generally metabolites of interest in fruits requires to objectify the sampling date at a given physiological stage. This allows deciphering the effects of environmental factors on the accumulation of metabolites at organ or plant level and their consequences in the concentration of the fruit at harvest. In conclusion, resistant varieties seemed to be less impacted by WD than Vinifera ones, which is bode well for the development of these varieties in relation to climate change challenges.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Roland Aurélie1, Wilhelm Luciana2,3,4, Torregrosa Laurent2,3, Dournes Gabriel4, Pellegrino Anne3 and Ojeda Hernán2

1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 UE Pech Rouge, INRAE, Gruissan, France
3 UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
4 UMR AGAP, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France  

Contact the author

Keywords

Climate change, water deficit, tolerant varieties, wine quality, thiol precursors

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Antioxidant activity of yeast peptides released during fermentation and autolysis in model conditions

Aging wine on lees benefits different wine sensory and technological properties including an enhanced resistance to oxidation. Several molecules released by yeast, such as membrane sterols and glutathione, have been previously proposed as key factors for this activity [1].

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.