IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

New fungus-resistant grapevine varieties display high and drought-independent thiol precursor levels

Abstract

The use of varieties tolerant to diseases is a long-term but promising option to reduce chemical input in viticulture. Several important breeding programs in Europe and abroad are starting to release a range of new hybrids performing well regarding fungi susceptibility and wine quality. Unfortunately, little attention is paid by the breeders to the adaptation of these varieties to climatic changes and to the aromatic potential such as thiol precursors. Indeed, varietal thiols (3-sulfanylhexan-ol (3SH) and its acetate or the 4-methyl-4-sulfanylpentan-2-one (4MSP)) are very powerful aromatic compounds in wines coming from odorless precursors in grapes and could contribute to the typicity of such varieties. This study aimed to characterize 6 new resistant varieties selected by INRAE (Floreal, G5 and 3159B for white grapes and Artaban, 3176N and G14 for red grapes) in comparison to Syrah to (i) quantify the thiol precursors in the fruits and to (ii) evaluate the influence of water deficit (WD) imposed on field-grown vines on these molecules. Grapes were picked-up at the arrest of phloem unloading to objectify the sampling at a precise physiological landmark and analyzed by LC-MS/MS. Six thiol precursors were quantified by isotopic dilution across all samples and only 3 were clearly identified and quantified: the glutathionylated (G3SH), cysteinylated (Cys3SH) and one dipeptidic precursors of 3SH (CysGly3SH). For all varieties, G3SH contents represented between 75 and 100% of the aromatic potential, followed by Cys3SH (0-16%) and finally the CysGly3SH (0-13%). The absolute concentrations of G3SH ranged from 31 to 132 µg/kg for white varieties and from 68 to 466 µg/kg for red ones. Surprisingly, 3176N had exceptional G3SH levels that can reach 466 µg/kg which corresponded to nearly 777 µg/L in volume concentration. The pedigree of this variety which includes Grenache as a progenitor could explain the high levels of thiol precursors as observed in the Rosé wines of Provence, a type of wines also characterized by high levels of varietal thiols. Whatever the variety, we did not find marked effects of WD on the contents in thiol precursors when expressed in µg/kg. When expressed in µg/berry to reflect the real impact of WD on rate of metabolite accumulation per organ, 3176N and Artaban showed significant differences between moderate and high WD treatments (p-value < 0.05, less amount of thiol precursors in WD grapes). Analyzing thiol precursors and more generally metabolites of interest in fruits requires to objectify the sampling date at a given physiological stage. This allows deciphering the effects of environmental factors on the accumulation of metabolites at organ or plant level and their consequences in the concentration of the fruit at harvest. In conclusion, resistant varieties seemed to be less impacted by WD than Vinifera ones, which is bode well for the development of these varieties in relation to climate change challenges.

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Roland Aurélie1, Wilhelm Luciana2,3,4, Torregrosa Laurent2,3, Dournes Gabriel4, Pellegrino Anne3 and Ojeda Hernán2

1 SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2 UE Pech Rouge, INRAE, Gruissan, France
3 UMR LEPSE, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France
4 UMR AGAP, Montpellier Uni – CIRAD – INRAE – Institut Agro, Montpellier, France  

Contact the author

Keywords

Climate change, water deficit, tolerant varieties, wine quality, thiol precursors

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vineyard floor management intensity impacts soil health indicators and biodiversity across South Australian viticultural landscapes

Vineyard floors in warm, dry landscapes including those in South Australia, have traditionally been managed using intensive practices such as tillage and herbicides to control weeds and vegetation, thereby limiting competition with grapevines for water and nutrients in order to not compromise yields.

FLAVONOID POTENTIAL OF MINORITY RED GRAPE VARIETIES

The alteration in the rainfall pattern and the increase in the temperatures associated to global climate change are already affecting wine production in many viticultural regions all around the world (1). In fact, grapes are nowadays ripening earlier from a technological point of view than in the past, but they are not necessarily mature from a phenolic point of view. Consequently, the wines made from these grapes can be unbalanced or show high alcohol content. Dramatic shifts in viticultural areas are currently being projected for the future (2).

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Embracing innovation for a future-ready wine industry: insights from Moldova’s AI-powered pilot project

In 2023–2024, the Republic of Moldova launched its first AI-powered wine pilot, integrating artificial intelligence into the vitivinicultural value chain.

From grapes to sparking wines: Aromas evaluation in a vine-spacing

Aim: Wine aromatic profile is a combination of viticulture and oenological practices and it is related to character, quality, and consumer acceptance. Based on the competition between soil capacity and canopy development, and on the potential to produce sparkling wines at Caldas, in the south region of Minas Gerais (Brazil) (21°55´S and 46°23´W, altitude 1.100m), the aim of this work was the evaluation of the development of aromas (secondary metabolites) from grapes to sparkling wines in a vine-spacing experiment and whether the distance between the vines can influence the aromatic profile of the sparkling wines (final product).