IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Abstract

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. The consequences of such additions on the main metabolism are well known. However, their impact on the synthesis of aromas has been poorly understood. Fermentation temperature is another variable that affects the production of fermentative aromas in wine. For example, high concentrations of esters are obtained at low temperatures whereas higher alcohols are obtained at high temperature. Nevertheless, the impact of fermentation temperature on aroma production kinetics has never been studied in interaction with nitrogen addition during fermentation.So, the main objective of this study was to evaluate the impact of nitrogen addition at different fermentation temperature on both the fermentation kinetics and aroma synthesis kinetics thanks to online GC-MS system. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design with response surface modeling and GAM modeling.Our results indicated that all three factors studied had important effects on fermentation and aroma production kinetics. These parameters do not impact in the same way the different families of volatile compounds. For example, high temperatures induce an important evaporation for ethyl esters and isoamyl acetate, while an increase in the production of isobutyl acetate is observed when the temperature increase. Moreover, the study of these three factors simultaneously allowed us to show that propanol is not only a marker of the presence of assimilable nitrogen in the medium, but above all a marker of cellular activity.This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the ideal combination of initial and added nitrogen concentration and fermentation temperature.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Godillot Joséphine1, Aguera Evelyne2, Sanchez Isabelle3, Baragatti Meili3, Perez Marc1, Sablayrolles Jean-Marie1, Farines Vincent1 and Mouret Jean-Roch1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2UE Pech Rouge, INRAE, Gruissan, France
3MISTEA, INRAE, Institut Agro, Montpellier, France 

Contact the author

Keywords

Alcoholic fermentation – Nitrogen additions  – Temperature – Fermentative aromas – Statistical modeling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Identifying New Zealand Sauvignon blanc terroirs

The concept of terroir is well established in the ‘old world’ wine industry but its use is still relatively new in New Zealand. Marlborough Sauvignon blanc has become a benchmark

Caratterizzazione delle produzioni vitivinicole dell’ area del Barolo: un’esperienza pluridisciplinare triennale (1)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

Does the location of wine cellars have significant impact on the evolution of madeira wine polyphenols?

Unlike table wines, Madeira Wine (MW,17-22% ABV) benefits from a long aging period under thermo-oxidative aging conditions, during which it gains its unique and complex flavour. A broad study is ongoing and aims to assess if the differences in the storage conditions impact significantly the evolution of MWs during canteiro aging. Considering that polyphenols have a significant role in the wine aging, we intended to appraise if there are significant differences in the evolution trends of polyphenols of MWs aging in different cellars under canteiro. Different MWs were aged into brand-new oak casks in two different wine cellars, one in Funchal (B) and other in Caniçal (Z). Temperature and humidity data were sensor recorded. RP-HPLC-DAD was used to perform the identification and quantification of polyphenols [1]. CIELab parameters were also assessed, using an UV-Vis spectrophotometer.