IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Abstract

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed. The consequences of such additions on the main metabolism are well known. However, their impact on the synthesis of aromas has been poorly understood. Fermentation temperature is another variable that affects the production of fermentative aromas in wine. For example, high concentrations of esters are obtained at low temperatures whereas higher alcohols are obtained at high temperature. Nevertheless, the impact of fermentation temperature on aroma production kinetics has never been studied in interaction with nitrogen addition during fermentation.So, the main objective of this study was to evaluate the impact of nitrogen addition at different fermentation temperature on both the fermentation kinetics and aroma synthesis kinetics thanks to online GC-MS system. We also studied the effect of the initial nitrogen content of the must and the quantity of added nitrogen. To study the impact of these 3 parameters simultaneously, we used a Box-Behnken design with response surface modeling and GAM modeling.Our results indicated that all three factors studied had important effects on fermentation and aroma production kinetics. These parameters do not impact in the same way the different families of volatile compounds. For example, high temperatures induce an important evaporation for ethyl esters and isoamyl acetate, while an increase in the production of isobutyl acetate is observed when the temperature increase. Moreover, the study of these three factors simultaneously allowed us to show that propanol is not only a marker of the presence of assimilable nitrogen in the medium, but above all a marker of cellular activity.This work enables to get a deeper understanding of the regulation of the yeast metabolism. It also underlines the possibility to refine the organoleptic profile of a wine by targeting the ideal combination of initial and added nitrogen concentration and fermentation temperature.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Godillot Joséphine1, Aguera Evelyne2, Sanchez Isabelle3, Baragatti Meili3, Perez Marc1, Sablayrolles Jean-Marie1, Farines Vincent1 and Mouret Jean-Roch1

1SPO, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
2UE Pech Rouge, INRAE, Gruissan, France
3MISTEA, INRAE, Institut Agro, Montpellier, France 

Contact the author

Keywords

Alcoholic fermentation – Nitrogen additions  – Temperature – Fermentative aromas – Statistical modeling

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The influence of terroir on the quality of wine of the Cahors A.O.C

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin. Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996).

IMPACT OF HARVEST DATE ON THE FINE MOLECULAR COMPOSITION OF MUST AND BORDEAUX RED WINE (VAR. MERLOT, CABERNET SAUVIGNON). FOCUS ON ACIDITY AND SENSORY IMPACT AFTER FIVE YEARS OF AGING

Climate change has brought several impacts that are becoming increasingly intense during the last few years and put at risk the quality of the berries or even the plant’s sustainability. Such extreme climatic events impact the composition of the wine while modulating its quality and the consumer preferences (Tempère et al., 2019). The three most important changes that take place in the must are: 1) decrease acidity, 2) increase of the concentration of sugar, hence increase of alcohol in the wine, and 3) modification
of the sensory balance and the development for example of cooked fruit aromas.

OENOLOGICAL AND SUSTAINABILITY POTENTIAL OF WINES PRODUCED FROM DISEASE RESISTANT GRAPE CULTIVARS (PIWI WINES)

The strategy for sustainability in the wine sector of the EU refers to a set of practices and principles that aim to minimize the negative impact of wine production on the environment, social and economic sustainability. Sustainable wine production involves a range of practices that are designed to reduce waste, conserve resources, and promote the well-being of workers and communities.

Metabolomics screening of Vitis sp. interspecific hybrids to select natural ingredients with cosmetic purposes

Introducing natural ingredients using green chemistry practices is a major challenge in cosmetics industry to follow the market trend. Among the plants of cosmetic interest, vine products show a remarkable diversity of natural substances with high potential for the cosmetic and dermatological sectors. To date, research focuses on well-known compounds like E-resveratrol and E-ε-viniferin,

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.