IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

Sensory profiles and European Consumer Preference related to Aroma and Phenolic Composition of Wines made from Fungus Resistant Grape Varieties

Abstract

New grape varieties with several resistance loci towards powdery and downy mildew allows to significantly reduce the use of fungicides. These fungus resistant grape varieties (PIWI from the German Pilzwiderstandsfähig) play a crucial role to reach the goal to lower pesticide use by 50% as requested by the European Green Deal for 2030. However, wine growers are reluctant to plant them due to a lack of experience in vinification and uncertainty how consumer perceive and purchase wines of these completely unknown varieties.
The objective of this study within the VITIFIT research consortium was to vinify different wine styles in two vintages from grapes of four white and three red PIWI. Most of them came from the same experimental site, where four classic varieties were planted as well. We regressed data obtained by descriptive analysis with hedonic ratings from German, French, Italian, Danish and Dutch consumers. Several consumer segments appeared having different drivers of preference, however all consumers disliked sour, astringent and green wines with less fruit and color. Wine professionals scored the same wines and judged the wines very similar to the consumers: 9% of PIWI wines were rated significantly better, 9% significantly inferior and in 82%, no difference occurred.
To unravel the molecular base we analysed aroma compounds in a non-targeted way as well as by targeted analysis by SIDA-GC-MS or LC-MS for monoterpenes, C13-norisoprenoids and polyfunctional thiols. Analysis of phenolic compounds covered indirect measurements such as Folin-C or Harbertson-Adams-Assay as well as targeted analysis by LC-MS or LC-DAD. In case of the Muscaris (PIWI) versus Muskateller comparison Muscaris wines were richer in cis-roseoxide, while linalool and α-terpineol were higher in Muskateller wines. A sensory napping analysis however, could not distinguish wines of both varieties. So far, no specific off-flavors could be detected in the new PIWIs as they are reported for old hybrid varieties. Although fungus resistance may relate to increased polyphenols in the grape skin, red wines made from PIWI did not show higher concentrations in general across the different winemaking styles.
Overall, making wines from grapes from the same or very similar vineyards, PIWIs delivered from a sensory and hedonic point of view equivalent or even superior wines. Using different winemaking styles allow fulfilling specific and varying sensory demands of European consumers. Combining these findings with the elsewhere reported improved sustainability in growing PIWIs, should convince a rising number of conventional and organic vintners to plant more PIWIs in the near future.

References

sensory evaluation, fungus resistant grape varieties, consumer, aroma compounds, polyphenols

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Weber Marc1, Vestner Jochen1 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Basic Terroir Unit (U.T.B.) and quality control label for honey; making the designations of origin (A.O.C) and« crus » more coherent

Considérant d’une part la judicieuse mise au point d’un label de qualité contrôlée des miels suisses (STÖCKLI et al. 1997), considérant d’autre part l’élaboration d’une carte des paysages végétaux (HEGG et al. 1993),

TerraClim, an online spatial decision support system for the wine industry

Climate projections for the future suggest favourable conditions for some wine producing regions, but challenging conditions for others. For instance, temperature increases are likely to shift grapevine phenology, ripening and harvest dates, and potentially affect grape quality and yield.

Critical investigation on additions to improve the sensory characteristics of dealcoholized wine

The demand for dealcoholized wine has been progressively increasing in recent years. Moreover, the attention for such products is probably increasing even more. Due to that increasing demand and market awareness the legal authorities are about changing rules for that products. Also, at OIV level, these products are being intensively discussed for certain time. The production of dealcoholized wine bases on wine as initial product. This wine is then reduced by physical methods to an alcohol content of less than 0.5% vol., or in other words, to less than 4g/l of alcohol. There are various technologies are possible for producing dealcoholized wine (Schmitt and Christmann 2019).

Caractérisation du terroir en Espagne : méthodologie de l’évaluation et de la validation

In recent years, there has been a growing interest in characterizing the ecological environment of vineyard production, and the growing need to delimit and characterize with precision the different homogeneous viticultural units. This has allowed the development of new studies which have as their objective the Vineyard Zoning. The delimitation and characterization of wine-growing areas poses specific problems in Spain, not only linked to the specific characteristics of the territory, but also to the size, distribution and index of viticultural occupation in the designations of origin.

Benefits and risks of the utilization of grape pomace as organic fertilizers

Rhineland-Palatinate is Germany’s largest wine growing region. The recently launched collaborative project in the frame of the ‘Carl-Zeiss-Stiftungs-Kooperationsfonds für Nachhaltigkeitsforschung’ focusses on the risk-benefit assessment of the use of grape pomace (GP) from the region ‘Pfalz’ in Rhineland-Palatinate as a natural fertilizer