terclim by ICS banner
IVES 9 IVES Conference Series 9 NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Abstract

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurodegenerative disorders including Alzheimer’s and Parkinson’s disease. Alpha-synuclein (αsyn), is a 140 amino acid protein abundant in the brain. In Parkinson’s disease, insoluble forms of this protein accumulate forming inclusions termed Lewy bodies which unravel different molecular events that finally cause the death of dopaminergic neurons. In order to evaluate the capacity of HT to inhibit αsyn fibril formation and to study the effect of this compound against αsyn induced toxicity and inflammation, several techniques have been used including fluorescence spectroscopy, transmission electronic microscopy, RT-PCR, western blot and immunohistochemistry. Our results demonstrate that HT (at micromolar levels, 25-50 µM) presents a strong inhibitory effect preventing not only αsyn aggregation but also exercising a destabilising effect by disaggregating αsyn fibrils. Moreover, HT is able to counteract αsyn-induced toxicity totally reverting the death of neuronal cells (PC12 cell line). Additionally, HT can reduce inflammation induced by αsyn fibrils in microglial cells (BV2 cell line). Indeed, a reduction of mRNA levels of TNF-α, iNOS, IL-1β, IL-6 and CXCL10 was observed after the co-treatment of BV2 with HT and αsyn fibrils. Our results also demonstrated that the molecular mechanisms involved in this effect are related with the modulation of mitogen activated protein kinases (MAPKs) and the generation of reactive oxygen species through nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. To sum up, our data support the use of HT to prevent neurotoxicity and inflammation associated with Parkinson’s disease.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Hornedo-Ortega, Ruth¹, Gallardo-Fernández, Marta¹, Cerezo, Ana Belén¹, Troncoso, Ana Mª1, Garcia-Parrilla, Mª Carmen¹

1. Departamento de Nutrici.n, Bromatolog.a, Toxicolog.a y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/ P. Garc.a Gonz.lez n. 2, 41012 Sevilla, Spain

Contact the author*

Keywords

hydroxytyrosol, alpha-synuclein, wine, neuroprotection

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

FERMENTATION POTENTIAL OF INDIGENOUS NON-SACCHAROMYCES YEASTS ISOLATED FROM MARAŠTINA GRAPES OF CROATIAN VINEYARDS

The interest in indigenous non-Saccharomyces yeast for use in wine production has increased in recent years because they contribute to the complex character of the wine. The aim of this work was to investigate the fermentation products of ten indigenous strains selected from a collection of native yeasts established at the Institute for Adriatic Crops and Karst Reclamation in 2021, previously isolated from Croatian Maraština grapes, belonging to Hypopichia pseudoburtonii, Metschnikowia pulcherrima, Metschnikowia sinensis, Metschnikowia chrysoperlae, Lachancea thermotolerans, Pichia kluyveri, Hanseniaspora uvarum, Hanseniaspora guillermondii, Hanseniaspora pseudoguillermondii, and Starmerella apicola species, and compare it with commercial non-Saccharomyces and Saccharomyces strains.

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021).

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.