IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Sensory significance of aroma carry-over during bottling from aromatized wine-based beverages into regular wine

Abstract

In 2020 one out of  eight wine bottles were filled with a flavoured wine-based beverage.
Installed sealings absorb aroma compounds and release them during subsequent bottling of regular wines. This unintentional carry-over bears the risk to violate the legal ban of any
aromatization of regular wine.  Due to the highly seasonal bottling of aromatized wine-based beverages such as mulled wine, an installation of a second bottling line  reserved for aromatized beverages only is too expensive. Thus we investigated the absorption and desorption process during bottling and cleaning in order to minimize aroma carry-over by improved cleaning efficacy.  If cleaning obeys good manufacturing practice (GMP) and traces of aroma compounds in the subsequently filled wine show no sensory significance, this unintended aroma carry-over will be considered as technically unavoidable and has no legal consequences anymore. Based on a novel direct analysis of aroma compounds within the sealing polymers, which we exposed to aromatized wine and cleaning agents in a model
system, a GMP cleaning sequence removed only 11–62% of the seven absorbed marker
aroma compounds such as γ-decalactone, α-ionon or eugenol.1 Among the cleaning factors, high temperature of 85 °C revealed the largest cleaning efficacy, while chemical additives such as citric acid, caustic soda or ozone exhibited only minor impact. A total removal of absorbed aroma compounds from sealing however was not achieved, making a later release into subsequent wines possible. To study the requested absence of sensory significance, odor detection thresholds of seven aroma compounds commonly used for aromatization were determined in water, model wine and regular white wine. Applying the odor activity concept to traces of aroma compounds detected in the subsequent bottled wines allowed us to determine unequivocally their sensory impact. 

Studying uptake, cleaning and further release in two industry scale bottling lines we could confirm the uptake of marker compounds into built-in sealing during the filling of mulled or aromatized wines for four days. GMP cleaning only reduced small amounts of absorbed aroma compounds from the sealing, which was also the case for the subsequent bottling of regular wines. Sensory evaluation of the wine before and after bottling by a 2-out-of-5 test could not detect the bottled wine. In fact, concentrations of respective aroma compounds remained below the analytical limit of detection or way below their respective sensory
thresholds. In conclusion, despite of migration of aroma compounds into the sealing of a bottling line, execution of GMP cleaning and dilution effects in the subsequently filled wine prevented any aroma carry-over of sensory significance. Thus, a potential analytical determination of aroma traces would not lead to legal prosecution.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gottmann Jörg1, Vestner Jochen1 and Fischer Ulrich1

1Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz, Institute for Viticulture and Oenology, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany

Contact the author

Keywords

aroma carry-over, odor detection threshold, odor activity value, cleaning, aromatized wines, sensory evaluation

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Vitiforestry as innovative heritage. Adaptive conservation of historical wine-growing landscapes as response to XXI century’s challenges.

Traditional agricultural and agro-pastoral systems (prior to industrial revolution) often have the characteristic of being multiple systems, in which multiple crops are hosted simultaneously on the same plot. currently research suggests to study more in depth the potential of multiple agricultural systems in order to detect those characteristics of multiple agrarian systems that could allow modern viticulture to adapt to the challenges posed by climate change: rising temperatures with impacts on the phenological cycle of the vine, resurgence of plant deseases, extreme soil washout phenomena and hail storms, among others.

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays.

Analysis of voltammetric fingerprints of different white grape musts reveals genotype-related oxidation patterns

Must oxidation is a complex process involving multiple enzymatic transformations, including the oxidation of phenolics containing an ortho-diphenol function. The latter process has a primary influence on wine aroma characteristics and stability, due to the central role of ortho-diphenols in the non-enzymatic oxidative reactions taking place during winemaking and in finished wine. Although oxidation of must is traditionally avoided, in recent years its contribution to wine quality has been revisited, and in some cases improvements to wine aroma have been observed with the application of controlled must oxidation. Nowadays there is a great interest in the wine industry towards the identification of specific markers or patterns to characterize and classify the response of grape must to oxidation.