IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Abstract

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate. Influenced by several factors related with aging process itself and the characteristics of casks: botanical origin, volume, toasting degree, previous usage and pre-treatments, like the wine-seasoning process.Casks that have previously contained a Sherry wine (Fino, Oloroso, etc) gives rise to the so-called Sherry Cask®. The characteristics of Sherry Casks depends on the Sherry wine previously contained. They contribute during brandy aging with compounds from the wood, as well as with those from the wine that were retained in the wood’s pores. Potential extraction of these compounds is influenced by alcoholic strength. Traditionally, distillates are aged at between 50-70% ABV, although in some wineries at the alcoholic strength for consumption. Moreover, alcoholic strength has a direct impact on the logistics of the winery. An aging process with distillates of a higher alcoholic strength allows to obtain a greater volume of the final product (36% ABV) with less barrels required for the process. Barrels represent an immobilised asset for the wineries that has a direct impact on the production costs. Due to its importance, this work aims to study the influence of alcoholic strength on the composition of phenolic compounds in brandies aged for 12 months in Sherry Cask.Methods: A distillate at 77% ABV was hydrated with demineralised water to reach the different alcoholic strengths to be tested: 40%, 55% and 68% ABV. Brandies were aged in American oak (Quercus alba) casks, medium toast, with a capacity of 500 L and seasoned by 18% ABV Oloroso Sherry wine for 3 years. Distillates and Sherry Casks were supplied by Bodegas Fundador SLU, belonging to GI of Brandy de Jerez. Each test was carried out in duplicate, two barrels for each alcoholic strength, following a static aging process and samples were taken periodically to follow their evolution, showing in this study results up 12 months. The phenolic and furfural compounds were quantified by UHPLC. The results are expressed in mg/L 100% vol. alcohol in order to the different alcoholic strengths could be compared. Results: Brandies aged with lower alcoholic strength lead to a greater accumulation of phenolic compounds. In general, between 40 and 55% ABV there are no differences, while at 68% ABV lower values are obtained. This difference is more marked in phenolic acids (Gallic, Ellagic, Syringic and Vanillic acids) and furanic aldehydes (Furfural, 5-methylfurfural, 5-HMF) than in phenolic aldehydes (Vanillin, Syringaldehyde, Coniferaldehyde, Sinapaldehyde). For phenolics from wine-seasoning higher values was found for 40% ABV (Caffeic and Coumaric acids).

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Butrón Benítez Daniel1, Valcárcel-Muñoz Manuel J.2, García-Moreno M. Valme1, Guerrero-Chanivet María1,2 and Guillén-Sánchez Dominico A.1

1Department of Analytical Chemistry, Faculty of Science, IVAGRO. University of Cádiz.
2Bodegas Fundador S.L.U.

Contact the author

Keywords

Brandy, alcoholic strengths, ageing, phenolics, Sherry Cask

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Conservation: the best valorisation strategy for wine growing areas

Terroir encompasses many elements, including environment, grapes and human inputs that together contribute to the final wine quality of a certain wine growing area.

Enhancing plant defense: carbon dots for efficient spray-induced gene silencing 

Ectopic RNA application for plant defense faces challenges in tree crops, including size, diffusion, and stability of active compounds such as ribonucleoproteins and nucleic acids. While existing strategies involve expressing dsRNA in transgenic plants targeting pathogens, our research strives to develop a transient RNAi system based on Spray-Induced Gene Silencing (SIGS). This approach aims to circumvent legal barriers and public concerns associated with genetically modified organisms (GMOs). Our strategy integrates SIGS with branched polyethyleneimine-functionalized Carbon Dots (bPEI-CDs) as nanocarriers, effectively addressing unique delivery challenges in plant defense as RNA stability and uptake enhancement

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Adaptation to soil and climate through the choice of plant material

Choosing the rootstock, the scion variety and the training system best suited to the local soil and climate are the key elements for an economically sustainable production of wine. The choice of the rootstock/scion variety best adapted to the characteristics of the soil is essential but, by changing climatic conditions, ongoing climate change disrupts the fine-tuned local equilibrium. Higher temperatures induce shifts in developmental stages, with on the one hand increasing fears of spring frost damages and, on the other hand, ripening during the warmest periods in summer. Expected higher water demand and longer and more frequent drought events are also major concerns. The genetic control of the phenotypes, by genomic information but also by the epigenetic control of gene expression, offers a lot of opportunities for adapting the plant material to the future. For complex traits, genomic selection is also a promising method for predicting phenotypes. However, ecophysiological modelling is necessary to better anticipate the phenotypes in unexplored climatic conditions Genetic approaches applied on parameters of ecophysiological models rather than raw observed data are more than ever the basis for finding, or building, the ideal varieties of the future.

Tutela legale delle denominazioni di origine nel mondo (con aspetti applicativi)

Uno degli aspetti più importanti nel commercio internazionale dei vini a denominazione è quello del riconoscimento dei diritti di esclusiva garantiti sui e dal territorio geografico d’o­rigine. Al fine di cautelarsi nei confronti della sempre più agguerrita concorrenza mondiale, è opportuno adottare adeguate protezioni ufficiali e legali delle denominazioni che possono derivare sia dalla “naturalità” del prodotto stesso che dalla “originalità” più particolare.