IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The kinetics of grape aromatic precursors hydrolysis at three different temperatures

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

Abstract

In neutral grapes, it is known that most aroma compounds are present as non-volatile precursors. There is strong evidence that supports the existence of a connection between the content of aroma precursors in grapes and the aromatic quality of wine1. Harsh acid hydrolysis is considered the better way to reveal the aroma potential of winemaking grapes, because transformations taking place during fermentation include relevant chemical rearrangements in acid media that are better predicted by acid hydrolysis2. The aim of the present work is to establish a methodology to evaluate the aromatic potential of the grape from the acid hydrolysis in anoxic conditions of its aromatic and phenolic fraction.
In this work, firstly two different samples of Grenache grapes aromatic and phenolic fraction (PAF) were extracted, followed by acid hydrolysis under strict anoxic conditions based on a previously developed methodology3. These PAFs were reconstituted in model wine and aged in duplicate under anoxic conditions at three temperatures: 75, 50 and 35 ºC. The aged model wines were collected at different sampling times 75 ºC (1h, 2h, 6h, 12h, 24h, 48h, 96h), 50 ºC (0.5, 1, 2, 5, 7, 10 and 14 weeks) and at 35ºC (0.5, 1, 5, 3.5, 6, 9 and 12 months).
Hydrolysates were extracted and analyzed by two different analytical methods: esters, free norisoprenoids, terpenoids, phenols, lactones, vanillins and cinnamates were analyzed by SPE-GC-MS4, while varietal thiols were analyzed by LC-QqQ-MS.
The hydrolysates obtained at 50 and 75ºC present sensory profiles congruent with olfactory nuances of unoxidized wine. In fact, the absolute concentration values ​​found for terpenes, lactones and norisoprenoids are within the normal values ​​expected in a wine, except for TDN, which appears in large quantities. However, phenols, derivatives of vanilla and varietal thiols especially 3-mercaptohexanol appear in much higher amounts than would be expected in a Grenache wine, possibly because this type of hydrolysis is capable of release a major part of aromatic potential of grape. Very few differences are observed in the hydrolysis profiles between the two samples. The hydrolysis profile at the same temperature is similar between the samples in most cases even though different amounts of volatiles are obtained. All compounds seem to hydrolyze following two types of behavior that can be explained by the combination of two phenomena: the generation of volatiles (hydrolysis and rearrangements) and the subsequent degradation at wine pH. For those compounds with congruent evolutions at the three different temperatures, a model able to predict the evolution of varietal volatiles at room temperature will be presented.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez Acevedo Elayma1, Lopez Ricardo1 and Ferreira Vicente1

1Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)

Contact the author

Keywords

aromatic and phenolic fraction (PAF), acid hydrolisis, aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

WHITE WINES OXIDATIVE STABILITY: A 2-VINTAGE STUDY OF CHARDONNAY CHAMPAGNE BASE WINES AGED ON LEES IN BARRELS

Ultra-premium champagne wines are characterized by a long stay on laths. The goal of the winemaker is to use all possible oenological techniques to keep the aromatic freshness of the future products. To that purpose, some champagne base wines can be aged on lees in oak barrels. However, if it is now acknowledged that such ageing practices contribute to the oxidative stability of dry white wines, no study has been done on Chardonnay champagne base wines designed for a long ageing on laths [1].

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies.

Effect of interspecific yeast hybrids for secondary in-bottle alcoholic fermentation of english sparkling wines

In sparkling winemaking several yeasts can be used to perform the primary alcoholic fermentation that leads to the elaboration of the base wine. However, only a few Saccharomyces cerevisiae yeast strains are regularly used for the secondary in-bottle alcoholic fermentation 1. Recently, advances in yeast development programs have resulted in new breeds of interspecific wine yeast hybrids that ferment efficiently while producing novel flavours and aromas 2. In this work, sparkling wines produced using interspecific yeast hybrids for the secondary in-bottle alcoholic fermentation have been chemically and sensorially characterized.METHODS: Three commercial English base wines have been prepared for secondary in-bottle alcoholic fermentation with different yeast strains, including two commercial and several novel interspecific hybrids derived from Saccharomyces species not traditionally used in sparkling winemaking. After 12 months of lees ageing, the 14 wines produced were analysed for their chemical and macromolecular composition 3,4, phenolic profile 5, foaming and viscosity properties [6]. The analytical data were supplemented with a sensory analysis.

Different strategies for the rapid detection of Haze‐Forming Proteins (HFPs)

Over the last decades, wine analysis has become an important analytical field, with emphasis placed on the development of new methodologies for characterization and elaboration control.

Fractal analysis as a tool for delimiting guarantee of quality areas

The pioneering work of Mandelbrot in the 70’s for building the fractal theory lead rapidly to many interesting applications in different fields such as earth sciences and economy.