IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The kinetics of grape aromatic precursors hydrolysis at three different temperatures

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

Abstract

In neutral grapes, it is known that most aroma compounds are present as non-volatile precursors. There is strong evidence that supports the existence of a connection between the content of aroma precursors in grapes and the aromatic quality of wine1. Harsh acid hydrolysis is considered the better way to reveal the aroma potential of winemaking grapes, because transformations taking place during fermentation include relevant chemical rearrangements in acid media that are better predicted by acid hydrolysis2. The aim of the present work is to establish a methodology to evaluate the aromatic potential of the grape from the acid hydrolysis in anoxic conditions of its aromatic and phenolic fraction.
In this work, firstly two different samples of Grenache grapes aromatic and phenolic fraction (PAF) were extracted, followed by acid hydrolysis under strict anoxic conditions based on a previously developed methodology3. These PAFs were reconstituted in model wine and aged in duplicate under anoxic conditions at three temperatures: 75, 50 and 35 ºC. The aged model wines were collected at different sampling times 75 ºC (1h, 2h, 6h, 12h, 24h, 48h, 96h), 50 ºC (0.5, 1, 2, 5, 7, 10 and 14 weeks) and at 35ºC (0.5, 1, 5, 3.5, 6, 9 and 12 months).
Hydrolysates were extracted and analyzed by two different analytical methods: esters, free norisoprenoids, terpenoids, phenols, lactones, vanillins and cinnamates were analyzed by SPE-GC-MS4, while varietal thiols were analyzed by LC-QqQ-MS.
The hydrolysates obtained at 50 and 75ºC present sensory profiles congruent with olfactory nuances of unoxidized wine. In fact, the absolute concentration values ​​found for terpenes, lactones and norisoprenoids are within the normal values ​​expected in a wine, except for TDN, which appears in large quantities. However, phenols, derivatives of vanilla and varietal thiols especially 3-mercaptohexanol appear in much higher amounts than would be expected in a Grenache wine, possibly because this type of hydrolysis is capable of release a major part of aromatic potential of grape. Very few differences are observed in the hydrolysis profiles between the two samples. The hydrolysis profile at the same temperature is similar between the samples in most cases even though different amounts of volatiles are obtained. All compounds seem to hydrolyze following two types of behavior that can be explained by the combination of two phenomena: the generation of volatiles (hydrolysis and rearrangements) and the subsequent degradation at wine pH. For those compounds with congruent evolutions at the three different temperatures, a model able to predict the evolution of varietal volatiles at room temperature will be presented.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez Acevedo Elayma1, Lopez Ricardo1 and Ferreira Vicente1

1Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)

Contact the author

Keywords

aromatic and phenolic fraction (PAF), acid hydrolisis, aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

New disease-resistant grapevine varieties response to drought under a semi-arid climate

In many regions, climate change leads to an increase in air temperature combined with a reduction of rainfall, intensifying climatic demand and water deficits (WD) (Cardell et al. 2019), which in turn may negatively impact grapevine development, yield and grape composition (Santos et al. 2020). In addition, climate change may also increase disease pressure, leading to further yield and quality losses, besides increasing costs due to increased vineyard spraying (Santos et al. 2020) and reducing viticulture acceptability by consumers (Guichard et al. 2017). Adopting new resistant varieties appears as a promising long-term solution to better manage vine protection, but unfortunately little is known regarding their behavior in front of WD.

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

How do KOCs influence wine consumers’ decisions? Based on NLP analysis and questionnaire surveys on Xiaohongshu

In China’s social media-driven marketing landscape, user-generated content (UGC) plays a pivotal role in brand communication and consumer decision-making.

Metabolomics screening of Vitis sp. interspecific hybrids to select natural ingredients with cosmetic purposes

Introducing natural ingredients using green chemistry practices is a major challenge in cosmetics industry to follow the market trend. Among the plants of cosmetic interest, vine products show a remarkable diversity of natural substances with high potential for the cosmetic and dermatological sectors. To date, research focuses on well-known compounds like E-resveratrol and E-ε-viniferin,