IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The kinetics of grape aromatic precursors hydrolysis at three different temperatures

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

Abstract

In neutral grapes, it is known that most aroma compounds are present as non-volatile precursors. There is strong evidence that supports the existence of a connection between the content of aroma precursors in grapes and the aromatic quality of wine1. Harsh acid hydrolysis is considered the better way to reveal the aroma potential of winemaking grapes, because transformations taking place during fermentation include relevant chemical rearrangements in acid media that are better predicted by acid hydrolysis2. The aim of the present work is to establish a methodology to evaluate the aromatic potential of the grape from the acid hydrolysis in anoxic conditions of its aromatic and phenolic fraction.
In this work, firstly two different samples of Grenache grapes aromatic and phenolic fraction (PAF) were extracted, followed by acid hydrolysis under strict anoxic conditions based on a previously developed methodology3. These PAFs were reconstituted in model wine and aged in duplicate under anoxic conditions at three temperatures: 75, 50 and 35 ºC. The aged model wines were collected at different sampling times 75 ºC (1h, 2h, 6h, 12h, 24h, 48h, 96h), 50 ºC (0.5, 1, 2, 5, 7, 10 and 14 weeks) and at 35ºC (0.5, 1, 5, 3.5, 6, 9 and 12 months).
Hydrolysates were extracted and analyzed by two different analytical methods: esters, free norisoprenoids, terpenoids, phenols, lactones, vanillins and cinnamates were analyzed by SPE-GC-MS4, while varietal thiols were analyzed by LC-QqQ-MS.
The hydrolysates obtained at 50 and 75ºC present sensory profiles congruent with olfactory nuances of unoxidized wine. In fact, the absolute concentration values ​​found for terpenes, lactones and norisoprenoids are within the normal values ​​expected in a wine, except for TDN, which appears in large quantities. However, phenols, derivatives of vanilla and varietal thiols especially 3-mercaptohexanol appear in much higher amounts than would be expected in a Grenache wine, possibly because this type of hydrolysis is capable of release a major part of aromatic potential of grape. Very few differences are observed in the hydrolysis profiles between the two samples. The hydrolysis profile at the same temperature is similar between the samples in most cases even though different amounts of volatiles are obtained. All compounds seem to hydrolyze following two types of behavior that can be explained by the combination of two phenomena: the generation of volatiles (hydrolysis and rearrangements) and the subsequent degradation at wine pH. For those compounds with congruent evolutions at the three different temperatures, a model able to predict the evolution of varietal volatiles at room temperature will be presented.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez Acevedo Elayma1, Lopez Ricardo1 and Ferreira Vicente1

1Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)

Contact the author

Keywords

aromatic and phenolic fraction (PAF), acid hydrolisis, aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Red wines from southwest France, Lebanon and South Korea: study of phenolic composition and antioxidant and biological activities according to grape varieties and winemaking processes

The phenolic compounds present in the wine are responsible for reducing the risk of developing chronic diseases (cardiovascular, cancer, diabetes, Alzheimer …) because of their antioxidant activities and the presence of nutraceutical molecules with targeted biological activities. Polyphenols not only contribute to the “French paradox” but also contribute to give the wine its color, structure, aroma and allow a long-term preservation.

Dimethyl sulfide transfer through wine closures during bottle aging: implications for wine aroma management

Dimethyl sulfide (DMS) is a volatile sulfur compound with a complex role in wine aroma, contributing both desirable and undesirable sensory characteristics depending on its concentration (1).

Water and nutritional savings shape non-structural carbohydrates in grapevine (Vitis vinifera L.) cuttings

Global changes and sustainability challenge researchers in saving water and nutrients. The response of woody crops, which can be forced at facing more drought events during their life, is particularly important. Vitis vinifera can be an important model for its relevance in countries subjected to climate changes and its breeding, requiring cuttings plantation and strong pruning.

Firmness of the grapes. Mechanical tests and definition of indices. Study of the evolution of berry skin resistance during alcoholic fermentation

The mechanical strength or firmness of a fruit is considered an important parameter to characterize its state of maturity or conservation, as other parameters such as sugar level or color.

Mouthfeel effects due to oligosaccharides within a wine matrix

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine.