IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 The kinetics of grape aromatic precursors hydrolysis at three different temperatures

The kinetics of grape aromatic precursors hydrolysis at three different temperatures

Abstract

In neutral grapes, it is known that most aroma compounds are present as non-volatile precursors. There is strong evidence that supports the existence of a connection between the content of aroma precursors in grapes and the aromatic quality of wine1. Harsh acid hydrolysis is considered the better way to reveal the aroma potential of winemaking grapes, because transformations taking place during fermentation include relevant chemical rearrangements in acid media that are better predicted by acid hydrolysis2. The aim of the present work is to establish a methodology to evaluate the aromatic potential of the grape from the acid hydrolysis in anoxic conditions of its aromatic and phenolic fraction.
In this work, firstly two different samples of Grenache grapes aromatic and phenolic fraction (PAF) were extracted, followed by acid hydrolysis under strict anoxic conditions based on a previously developed methodology3. These PAFs were reconstituted in model wine and aged in duplicate under anoxic conditions at three temperatures: 75, 50 and 35 ºC. The aged model wines were collected at different sampling times 75 ºC (1h, 2h, 6h, 12h, 24h, 48h, 96h), 50 ºC (0.5, 1, 2, 5, 7, 10 and 14 weeks) and at 35ºC (0.5, 1, 5, 3.5, 6, 9 and 12 months).
Hydrolysates were extracted and analyzed by two different analytical methods: esters, free norisoprenoids, terpenoids, phenols, lactones, vanillins and cinnamates were analyzed by SPE-GC-MS4, while varietal thiols were analyzed by LC-QqQ-MS.
The hydrolysates obtained at 50 and 75ºC present sensory profiles congruent with olfactory nuances of unoxidized wine. In fact, the absolute concentration values ​​found for terpenes, lactones and norisoprenoids are within the normal values ​​expected in a wine, except for TDN, which appears in large quantities. However, phenols, derivatives of vanilla and varietal thiols especially 3-mercaptohexanol appear in much higher amounts than would be expected in a Grenache wine, possibly because this type of hydrolysis is capable of release a major part of aromatic potential of grape. Very few differences are observed in the hydrolysis profiles between the two samples. The hydrolysis profile at the same temperature is similar between the samples in most cases even though different amounts of volatiles are obtained. All compounds seem to hydrolyze following two types of behavior that can be explained by the combination of two phenomena: the generation of volatiles (hydrolysis and rearrangements) and the subsequent degradation at wine pH. For those compounds with congruent evolutions at the three different temperatures, a model able to predict the evolution of varietal volatiles at room temperature will be presented.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sánchez Acevedo Elayma1, Lopez Ricardo1 and Ferreira Vicente1

1Laboratory for Aroma Analysis and Enology (LAAE), Universidad de Zaragoza, Instituto Agroalimentario de Aragón (IA2) (UNIZAR-CITA), Zaragoza (Spain)

Contact the author

Keywords

aromatic and phenolic fraction (PAF), acid hydrolisis, aroma

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

FOLIAR APPLICATION OF METHYL JASMONATE AND METHYL JASMONATE PLUSUREA: INFLUENCE ON PHENOLIC, AROMATIC AND NITROGEN COMPOSITION OFTEMPRANILLO WINES

Phenolic, volatile and nitrogen compounds are key to wine quality. On one hand, phenolic compounds are related to wine color, mouthfeel properties, ageing potential. and are associated with beneficial health properties. On the other hand, wine aroma is influenced by hundreds of volatile compounds. Fermentative aromas represent, quantitatively, the wine aroma, and among these volatile compounds, esters, higher alcohols and acids are mainly responsible for the fermentation bouquet.

Vers des systèmes viticoles économes en pesticide. Étude du réseau DEPHY-Vigne

Dans le cadre de TerclimPro 2025, Esther Fouillet a présenté un article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8318

Physiological means to curb the enthusiasm of viruses from infecting grapevines  

The two most deadly viruses infecting and threatening the productivity of grapevines worldwide are leafroll and red blotch viruses. There is no cure for viral diseases other than roguing the symptomatic vines and replacing them with certified vines derived from clean, virus-tested stocks.
Given that phloem plays a central role in virus infection, this study aimed to purge the virus by girdling the phloem of leafroll-infected vines at different phenological stages of infected grapevines. Phloem-girdling was performed on canes at veraison to varying regions between the proximal and distal clusters.

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge