IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aroma diversity of Amarone commercial wines

Aroma diversity of Amarone commercial wines

Abstract

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release. The present work aims at characterizing the aroma composition of Amarone and to elucidate the relationships between chemical composition and sensory characters.  Two sets of Amarone wines from different vintages 2015 (17 wines) and 2016 (15 wines) were analyzed. The analyses were carried out by means of Gas Chromatography-Mass Spectrometry (GC-MS) and extracted by Solid Phase Extraction (SPE) and Solid Phase Micro Extraction (SPME). In addition, the sampled wines were subjected to a sensory evaluation in the form of sorting task. From both data sets, 70 volatile compounds were successfully identified and quantified, 30 of which were present in concentrations above their odor thresholds in all the samples. Using the odor activity value (OAV), the compounds that potentially contribute to Amarone perceived aroma are b-damascenone, ethyl and isoamyl acetate, ethyl esters (hexanoate, octanoate, butanoate, 3-methybutanoate), 4-ethyl guaiacol, 3-methylbutanoic acid, dimethyl sulfide (DMS), eugenol, massoia lactone, 1,4-cineol, TDN, cis-whisky lactone. The only differences found between the two vintages’ OAV list, could be observed in the presence of dimethyl trisulfide (DMTS) in the vintage 2015; whereas in the 2016 set g-nonalactone and trans-whisky lactone were found. Regarding the compounds that impart the most differences across both vintages, OAV max/min, where 4- ethyl phenol, 4-ethyl guaiacol, 1,8-cineole, 1,4-cineole, dimethyl sulfide (DMS). Results from the sorting task sensory analysis of the 17 wines from vintage 2015 showed three clusters formed. Cluster 1 composed of eight wines and described as “red fruit”, “solvent” and “sweet spices”. Cluster 2 formed by four Amarone was associated mainly with the “animal” and “oak/toasted” attributes. And cluster 3 (five wines) described with the attribute “cooked fruit”. While in the sorting task of vintage 2016 (15 wines) two clusters were formed: cluster A formed by 5 wines described as “cooked fruit” and “solvent”; and cluster B (10 wines) associated with the attributes “sweet spices”, “red fruit” and “oak/toasted”. To our knowledge the present research is the first attempt to identify and classify Amarone della Valpolicella commercial wines in terms of aroma. This study provides a list of compounds that can be characteristic of Amarone wine and that have been consistent across two vintages coming from different wineries . Moreover, from the volatiles analyzed, compounds such as dimethyl sulfide (DMS) and cineoles have been singled out as potential aroma markers of diversity in Amarone wines

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Samaniego Solis Jessica Anahi¹, Luzzini Giovanni¹, Slaghenaufi Davide¹and Ugliano Maurizio¹

¹University of Verona

Contact the author

Keywords

Amarone, grape withering, chemical characterization, Corvina, Corvinone

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of polyclonal selection for abiotic stress tolerance on the yield and must quality traits of grapevine varieties

The effects of climate change in viticulture are currently a major concern, with heat waves and drought affecting yield, wine quality, and in extreme cases, even plant survival. Ancient grapevine varieties have high intravarietal genetic variability that so far has been explored successfully to improve yield and must quality. Currently, there is little information available on intravarietal variability regarding responses to stress. In the current work, the intravarietal genetic variability of several Portuguese varieties was studied for yield, must quality, and tolerance to abiotic stress, through indirect, rapid, and nondestructive measurements carried out in the field.

Seasonal variations and climate interactions with phenolic extractability of Pinot noir across the whole winemaking process

Context and Purpose of the Study. A deeper understanding of the relationship between weather conditions and wine quality is essential for assessing the impact of climate change and developing effective adaptation strategies.

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Effects of auxin treatment on compositional and molecular ripening dynamics in grape varieties of northern Italy

Context and purpose of the study. The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.