Macrowine 2021
IVES 9 IVES Conference Series 9 Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

Abstract

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7). Based on previous research, it was observed that these compounds can be already present in freshly bottled wines, free from any sign of oxidation; forming stable, non-volatile and odorless complexes with sulfur dioxide (8). During storage in the bottle these compounds are released as the level of free SO2 decreases by oxidation causing a shift in the SO2-aldehyde adduct chemical equilibria. Moreover, wine aldehydes can be formed throught direct oxidation of their precursors (“de novo” formation), when the free SO2 level is under 5 mg/l (7-8). The main goal of this work is to study the intrinsic ability of the wines for the formation of “aldehydes de novo”. Hence, a method to consume oxygen at controlled doses, at 45 ° C, has been developed. This oxidation method allows to reach de novo formation of aldehydes on a fast way (2-7 days) depending on the wine. The validation of this method is carried out maintaining the same oxidation conditions at 25º C. In addition, the same wines have been submitted to consecutive air saturation cycles (9) for means of comparation. The proposed strategy comprises the study of eight red wines in duplicate, each wine underwent three increasing oxygen doses. The analysis carried out at the beginning at the and end of the oxidation were: aminoacids, metals, free and total SO2, total carbonyl compounds, acetaldehyde, color, IPT, Folin, as well as major and trace aroma compounds. The results show that this is a reproducible method of oxidation, which allows to reach de novo formation of aldehydes at all doses studied. Different profiles of oxygen consumption are obtained depending on the age and previous contact with oxygen, temperature had a strong effect on the formation of Strecker aldehydes with respect to the oxygen consumed.

1. Wildenradt et al., AJEV,1974, 25, 119 2. Escudero et al., JAFC, 2000, 48, 4268 3. Ferreira, A.C.S et al., JAFC, 2003, 51, 1377 4. Cutzach et al., JISVV, 1998, 32, 211 5. Culleré et al., JAFC, 2007, 55, 876 6. San Juan et al., JAFC, 2012, 60, 5045 7. Ferreira et al., JAFC, 2014,62, 10015 8. Bueno et al., JAFC., DOI 10.102117acs.jafc5b04634 9. Ferreira et al. ., JAFC., 2015, 63, 10928

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Almudena Marrufo-Curtido*, Ana Escudero, Ignacio Ontañon, Mónica Bueno, Vanesa Carrascon, Vicente Ferreira

*

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Multivariate strategies for red wines classification using stilbenes and flavonols content

Bioactive polyphenols from grapes and wines, like stilbenes and flavonols (SaF), are often determined to nutritional evaluation, but also for many other purposes. The objective of this study was to quantify SaF in red wines from “Campanha Gaúcha”, a large and young viticultural region from South Brazil. Moreover, through statistical analysis, evaluate the influence of these compounds according to varieties, production process, harvest years and micro-regions of cultivation. A total of 58 samples of red wines were analyzed by high-performance liquid chromatography coupled to diode array detector (HPLC-DAD) for determination of trans-resveratrol (R), quercetin (Q), myricetin (M), kaempferol (K), trans-e-viniferin (V) and their precursor, cinnamic acid (C).

Defining the mechanisms and impact of winemaking treatments on tannin and polysaccharides in red wine: recent progress in creating diverse styles

Tannin and polysaccharide concentration and composition is important in defining the texture of red wines, but can vary due to factors such as cultivar, region, grape ripeness, viticultural practices and winemaking techniques. However, the concentration and composition of these macromolecules is dependent not only on grape tannin and polysaccharide concentration and composition, but also their extractability and, in the case of polysaccharides, their formation by yeast. Through studies into the influence of grape maturity, winemaking and sensory impacts of red grape polysaccharides, seed and skin tannins, recent research in our laboratory has shown that the processes involved in the extraction of these macromolecules from grapes and their retention in wine are very complex.

Reduction of herbaceous aromas by wine lactic acid bacteria mediated degradation of volatile aldehydes

Consumers typically prefer wines with floral and fruity aromas over those presenting green-pepper, vegetal or herbaceous notes. Pyrazines have been identified as causatives for herbaceous notes in wines, especially Bordeaux reds. However, pyrazines are not universally responsible for herbaceousness, and several other wine volatile compounds are known to produce distinct vegetal/herbaceous aromas in wines. Specifically, volatile aldehydes elicit sensations of herbaceousness or grassiness and have been described in wines well above their perception thresholds.