IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Abstract

Climate change is modifying environmental conditions in all wine-growing areas of the world. High temperatures are the cause of an increased imbalance between industrial maturity and phenolic maturity, resulting in berries with high sugar levels, low concentration in organic acids and reduced concentrations in aromas and phenolic compounds. These grapes produce wines with high alcohol content and lack freshness, color intensity, and aromatic complexity. Viticultural strategies have been developed in recent years in order to maintain the quality of red wines, with a two-fold objective: improve the phenolic composition of wines and reduce their alcoholic content. Harpin αβ is a recombinant protein and elicitor of hypersensitive responses. When Harpin αβ is applied to crops, the expression of growth and defense genes is stimulated. These genes are generally associated with metabolic signals and pathways related to functions of protein and sugar transport and vegetative development. The objective of this work has been to apply Harpin αβ to the vines after veraison in order to advance harvest for reducing the alcohol content of the final wines while maintaining or improving their phenolic composition compared to full maturity grapes. This experiment was carried out in a commercial vineyard sited in Jumilla (Spain). Three treatments were applied; i) Control: untreated application of Harpin harvested at 15º Baume, ii) 2T: grapes treated twice with Harpin, at the time of veraison and 15 days later and harvested at 13º Baume and iii) 3T: an extra application of the compound made 15 days after the second treatment and grapes were also harvested at 13º Baume. In each treatment, the dose of Harpin αβ applied was 150 g/ha. All treatments were vinified in the same way. Once the wines were bottled, the physicochemical and chromatic parameters were analyzed. Wines from grapes of 2T treatments harvested at 13º Baume decrease significantly the pH, color intensity and total phenolic index of the wines. No significant difference was observed in the total acidity parameter. On the other hand, 3T treatmen increased significantly total anthocyanins compare to control wines. Moreover, this treatment obtained the highest concentration of tannins, although these differences were not significant compared to the control treatment. It is clear that the 3T treatment was much more effective in improving the phenolic concentration of the wines than the 2T treatment. These results showed that the Harpin application in the vineyard (3T) produced wines with similar phenolic content that the wines produced from fully ripe grapes but with 20% less alcohol. This makes the use of Harpin αβ an interesting strategy for winemakers seeking a natural reduction of alcoholic content in their wines without losing quality.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martínez-Moreno Alejandro ¹, Martínez-Pérez Pilar ¹, Bautista-Ortin Ana Belén¹ Pérez-Porras Paula¹ and Gomez-Plaza Encarna ¹

¹Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia

Contact the author

Keywords

climate change, elicitors, grape ripening, alcohol

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

INFLUENCE OF THE THICKNESS OF OAK ALTERNATIVES ON THE COMPOSITION AND QUALITY OF RED WINES

Aging red wines in oak barrels is an expensive and laborious process that can only be applied to wines with a certain added value. For this reason, the use of oak alternatives coupled with micro-oxygenation has progressively increased over recent years, because it can reproduce the processes taking place in the barrels more economically and quickly [1]. Several studies have explored how oak alternatives [2-5] can contribute to wine composition and quality but little is known about the influence of their thickness.

Description of the effect of the practical management in the characterization of « terroir effect »

The characterization of « the soil effect » in vine growing is often limited to the description of the physical components of the terroir. Many works were done in this direction and corresponded to geological, pedological or agronomical approaches. However, if the physical environment influences the vine and its grapes, its effect becomes limited at the scale of exploitation. Thus, it could be important to consider how the viticulturist « translated » the potential.

Sparkling wines and atypical aging: investigating the risk of refermentation

Sparkling wine (SW) production entails a two-steps process where grape must undergoes a primary fermentation to produce a base wine (BW) which is then refermented to become a SW. This process allows for the development of a new physicochemical profile characterized by the presence of foam and a different organoleptic profile.

Effect of quercus alba oak barrels from different forest on the volatile composition of Tempranillo wines

The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily