IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Use of a recombinant protein (Harpin αβ) as a tool to improve phenolic composition in wines

Abstract

Climate change is modifying environmental conditions in all wine-growing areas of the world. High temperatures are the cause of an increased imbalance between industrial maturity and phenolic maturity, resulting in berries with high sugar levels, low concentration in organic acids and reduced concentrations in aromas and phenolic compounds. These grapes produce wines with high alcohol content and lack freshness, color intensity, and aromatic complexity. Viticultural strategies have been developed in recent years in order to maintain the quality of red wines, with a two-fold objective: improve the phenolic composition of wines and reduce their alcoholic content. Harpin αβ is a recombinant protein and elicitor of hypersensitive responses. When Harpin αβ is applied to crops, the expression of growth and defense genes is stimulated. These genes are generally associated with metabolic signals and pathways related to functions of protein and sugar transport and vegetative development. The objective of this work has been to apply Harpin αβ to the vines after veraison in order to advance harvest for reducing the alcohol content of the final wines while maintaining or improving their phenolic composition compared to full maturity grapes. This experiment was carried out in a commercial vineyard sited in Jumilla (Spain). Three treatments were applied; i) Control: untreated application of Harpin harvested at 15º Baume, ii) 2T: grapes treated twice with Harpin, at the time of veraison and 15 days later and harvested at 13º Baume and iii) 3T: an extra application of the compound made 15 days after the second treatment and grapes were also harvested at 13º Baume. In each treatment, the dose of Harpin αβ applied was 150 g/ha. All treatments were vinified in the same way. Once the wines were bottled, the physicochemical and chromatic parameters were analyzed. Wines from grapes of 2T treatments harvested at 13º Baume decrease significantly the pH, color intensity and total phenolic index of the wines. No significant difference was observed in the total acidity parameter. On the other hand, 3T treatmen increased significantly total anthocyanins compare to control wines. Moreover, this treatment obtained the highest concentration of tannins, although these differences were not significant compared to the control treatment. It is clear that the 3T treatment was much more effective in improving the phenolic concentration of the wines than the 2T treatment. These results showed that the Harpin application in the vineyard (3T) produced wines with similar phenolic content that the wines produced from fully ripe grapes but with 20% less alcohol. This makes the use of Harpin αβ an interesting strategy for winemakers seeking a natural reduction of alcoholic content in their wines without losing quality.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Martínez-Moreno Alejandro ¹, Martínez-Pérez Pilar ¹, Bautista-Ortin Ana Belén¹ Pérez-Porras Paula¹ and Gomez-Plaza Encarna ¹

¹Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia

Contact the author

Keywords

climate change, elicitors, grape ripening, alcohol

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

AROMATIC AND FERMENTATIVE PERFORMANCES OF HANSENIASPORA VINEAE IN DIFFERENT SEQUENTIAL INOCULATION PROTOCOLS WITH SACCHAROMYCES CEREVISIAE FOR WHITE WINEMAKING

Hanseniaspora vineae (Hv) is a fermenting non-Saccharomyces yeast that compared to Saccharomyces cerevisiae (Sc) present some peculiar features on its metabolism that make it attractive for its use in wine production. Among them, it has been reported a faster yeast lysis and release of polysaccharides, as well as increased ß-glucosidase activity. Hv also produces distinctive aroma compounds, including elevated levels of fermentative compounds such as ß-phenylethyl acetate and norisoprenoids like safranal. However, it is known for its high nutritional requirements, resulting in prolonged and sluggish fermentations, even when complemented with Sc strain and nutrients.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

New highlights of polyphenols from red wine to counteract ocular degenerative diseases

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF), many resistance mechanisms have been found to accentuate the visual deficit.

Evolution of astringency during the ripening of red grapes through the tribological astringency index

The phenolic composition of red grapes is one of the most important quality parameters.

Role of anthocyanins and copigmentation in flavonol solubility in red wines 

Over the last years, due to climate change, several red wines, such as the Sangiovese wines, have been often subjected to loss of clarity due to the formation of deposits of fine needle-shaped crystals. This phenomenon turned out to be due to an excess of quercetin (Q) and its glycosides (Q-Gs) in wines. These compounds are synthesized to a large extent when grapes are excessively exposed to UVB radiations in vineyards[1]. Unfortunately, it is not easy to predict the degree of Q precipitation because its solubility strongly depends on the wine and matrix composition[2].