IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Abstract

Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects. Biogenic amines can be present in grapes, such as putrescine, spermidine, and spermine [1] or formed by microorganisms during the winemaking process such as histamine, cadaverine, hexylamine, and ethylamine [2]. Histamine is one of the targeted toxins by the Food and Drug Administration and the European Food Safety Authority. Dekkera/Brettanomyces, a wine spoilage yeast, can produce biogenic amines in grape juice [3]. Diamines can produce carcinogenic nitrosamines by reaction with nitrite. Biogenic amines are important causes of wine intolerance [4], producing intoxication symptoms.
The sensitivity to biogenic amines depends on insufficient amino oxidase activity, genetic predisposition, alcohol, acetaldehyde, gastrointestinal disease, or inhibition by other amines. Furthermore, it is worth mentioning that, susceptible persons who are immune-compromised and seniors, may exhibit intolerance to even low levels of biogenic amines and suffer more severe symptoms, these persons are increasing in developed countries. Therefore, factors that influence biogenic amines concentrations are of utmost importance for consumer safety, mainly for susceptible persons. The main objective of this study was to quantify biogenic amines and polyamines in industrially produced red wines available in Portuguese wineries. As well as to understand the impact of the spoilage yeasts Dekkera/Brettanomyces in the biogenic amines and polyamines concentrations. Wine sampling was carried out using a maximum variance/heterogeneous purposive non-probability technique. Ethylphenols were determined by GC-MS and biogenic amines and polyamines were determined by dispersive solid-phase extraction and HPLC-DAD after derivatization with benzoyl chloride. To better understand the real input of Dekkera/Brettanomyces activity in these compounds, a set of 79 Portuguese red wines produced at an industrial scale from 2012 to 2016 vintage were analyzed. A total of nine amines have been detected that range from 19.6 to 331 mg/L and concentrations of 4-ethylphenol of 4.5–5604 μg/L and of 4-ethylguaiacol of 2.3–831.2 μg/L [5]. The most abundant amines on average were putrescine followed by histamine and cadaverine. Simultaneous determination of biogenic amines and volatile phenols in industrial produced red wines permitted to conclude that the wine spoilage activity of Dekkera/Brettanomyces with the production of volatile phenols do not significantly contribute to biogenic amines increase and consequently intake by the consumers. Biogenic amines need to be controlled in order to ensure high levels of wine safety and quality to reduce risk to more vulnerable wine consumers.

References

[1] Bauza et al. Food Chemistry, 105 (2007), pp. 405-413.
[2] Anín-Azpilicueta et al. Critical Reviews in Food Science and Nutrition, 48 (3) (2008), pp. 257-275.
[3] Caruso et al., World Journal of Microbiology & Biotechnology, 18 (2002), pp. 159-163.
[4] Konakovsky et al. Food Additives & Contaminants, 28 (4) (2011), pp. 408-416.
[5] Filipe-Ribeiro et al. LWT – Food Science and Technology 115 (2019) pp.108488.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Filipe-Ribeiro Luís1, Milheiro Juliana1, Ferreira Leonor C.1, Correia Elisete2, Cosme Fernanda1 and M. Nunes Fernando

1Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro
2Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro

Contact the author

Keywords

Red wine; Biogenic amines; Dekkera/Brettanomyces; Ethylphenols; Histamine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

The relationship of wine store customers with the areas of production, considering provenance and tourism

This work aims at identifying the most appropriate marketing strategies to inform consumers of the global market about the added value of the wines of Friuli Venezia Giulia.

Irrigation frequency in four grapevine red varieties in Spain. Effect on must volatile composition

The irrigation water management in the vineyard is a crucial aspect to obtain sustainable quality production over time. Previous studies have set the water requirements to be applied in the vineyard at 30 % of the reference evapotranspiration (ET0), although there are no studies that settle the effects of the frequency of irrigation application on red varieties in Spain. The present study contemplates the application of deficit irrigation (30 % ET0) applying a weekly dose in a single irrigation (T07) or in two irrigation events (T03) per week. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

Immunotestπ: a new test for the determination of proteic stability in white and rosé wines

Proteic haze is a problem which may occur in all fruit-based beverages and fermented juices (beer, cider, wine). When it occurs, the economic loss is important.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.