Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines
Abstract
Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects. Biogenic amines can be present in grapes, such as putrescine, spermidine, and spermine [1] or formed by microorganisms during the winemaking process such as histamine, cadaverine, hexylamine, and ethylamine [2]. Histamine is one of the targeted toxins by the Food and Drug Administration and the European Food Safety Authority. Dekkera/Brettanomyces, a wine spoilage yeast, can produce biogenic amines in grape juice [3]. Diamines can produce carcinogenic nitrosamines by reaction with nitrite. Biogenic amines are important causes of wine intolerance [4], producing intoxication symptoms.
The sensitivity to biogenic amines depends on insufficient amino oxidase activity, genetic predisposition, alcohol, acetaldehyde, gastrointestinal disease, or inhibition by other amines. Furthermore, it is worth mentioning that, susceptible persons who are immune-compromised and seniors, may exhibit intolerance to even low levels of biogenic amines and suffer more severe symptoms, these persons are increasing in developed countries. Therefore, factors that influence biogenic amines concentrations are of utmost importance for consumer safety, mainly for susceptible persons. The main objective of this study was to quantify biogenic amines and polyamines in industrially produced red wines available in Portuguese wineries. As well as to understand the impact of the spoilage yeasts Dekkera/Brettanomyces in the biogenic amines and polyamines concentrations. Wine sampling was carried out using a maximum variance/heterogeneous purposive non-probability technique. Ethylphenols were determined by GC-MS and biogenic amines and polyamines were determined by dispersive solid-phase extraction and HPLC-DAD after derivatization with benzoyl chloride. To better understand the real input of Dekkera/Brettanomyces activity in these compounds, a set of 79 Portuguese red wines produced at an industrial scale from 2012 to 2016 vintage were analyzed. A total of nine amines have been detected that range from 19.6 to 331 mg/L and concentrations of 4-ethylphenol of 4.5–5604 μg/L and of 4-ethylguaiacol of 2.3–831.2 μg/L [5]. The most abundant amines on average were putrescine followed by histamine and cadaverine. Simultaneous determination of biogenic amines and volatile phenols in industrial produced red wines permitted to conclude that the wine spoilage activity of Dekkera/Brettanomyces with the production of volatile phenols do not significantly contribute to biogenic amines increase and consequently intake by the consumers. Biogenic amines need to be controlled in order to ensure high levels of wine safety and quality to reduce risk to more vulnerable wine consumers.
References
[1] Bauza et al. Food Chemistry, 105 (2007), pp. 405-413.
[2] Anín-Azpilicueta et al. Critical Reviews in Food Science and Nutrition, 48 (3) (2008), pp. 257-275.
[3] Caruso et al., World Journal of Microbiology & Biotechnology, 18 (2002), pp. 159-163.
[4] Konakovsky et al. Food Additives & Contaminants, 28 (4) (2011), pp. 408-416.
[5] Filipe-Ribeiro et al. LWT – Food Science and Technology 115 (2019) pp.108488.
DOI:
Issue: IVAS 2022
Type: Poster
Authors
1Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro
2Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro
Contact the author
Keywords
Red wine; Biogenic amines; Dekkera/Brettanomyces; Ethylphenols; Histamine