IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Does Dekkera/Brettanomyces wine spoilage raise the risk of biogenic amines intake? A screening in Portuguese red wines

Abstract

Wine quality and safety are the main concerns of consumers and health agencies. Biogenic amines and polyamines, depending on their concentration and on individuals, in wine can constitute a potential public health concern due to their physiological and toxicological effects. Biogenic amines can be present in grapes, such as putrescine, spermidine, and spermine [1] or formed by microorganisms during the winemaking process such as histamine, cadaverine, hexylamine, and ethylamine [2]. Histamine is one of the targeted toxins by the Food and Drug Administration and the European Food Safety Authority. Dekkera/Brettanomyces, a wine spoilage yeast, can produce biogenic amines in grape juice [3]. Diamines can produce carcinogenic nitrosamines by reaction with nitrite. Biogenic amines are important causes of wine intolerance [4], producing intoxication symptoms.
The sensitivity to biogenic amines depends on insufficient amino oxidase activity, genetic predisposition, alcohol, acetaldehyde, gastrointestinal disease, or inhibition by other amines. Furthermore, it is worth mentioning that, susceptible persons who are immune-compromised and seniors, may exhibit intolerance to even low levels of biogenic amines and suffer more severe symptoms, these persons are increasing in developed countries. Therefore, factors that influence biogenic amines concentrations are of utmost importance for consumer safety, mainly for susceptible persons. The main objective of this study was to quantify biogenic amines and polyamines in industrially produced red wines available in Portuguese wineries. As well as to understand the impact of the spoilage yeasts Dekkera/Brettanomyces in the biogenic amines and polyamines concentrations. Wine sampling was carried out using a maximum variance/heterogeneous purposive non-probability technique. Ethylphenols were determined by GC-MS and biogenic amines and polyamines were determined by dispersive solid-phase extraction and HPLC-DAD after derivatization with benzoyl chloride. To better understand the real input of Dekkera/Brettanomyces activity in these compounds, a set of 79 Portuguese red wines produced at an industrial scale from 2012 to 2016 vintage were analyzed. A total of nine amines have been detected that range from 19.6 to 331 mg/L and concentrations of 4-ethylphenol of 4.5–5604 μg/L and of 4-ethylguaiacol of 2.3–831.2 μg/L [5]. The most abundant amines on average were putrescine followed by histamine and cadaverine. Simultaneous determination of biogenic amines and volatile phenols in industrial produced red wines permitted to conclude that the wine spoilage activity of Dekkera/Brettanomyces with the production of volatile phenols do not significantly contribute to biogenic amines increase and consequently intake by the consumers. Biogenic amines need to be controlled in order to ensure high levels of wine safety and quality to reduce risk to more vulnerable wine consumers.

References

[1] Bauza et al. Food Chemistry, 105 (2007), pp. 405-413.
[2] Anín-Azpilicueta et al. Critical Reviews in Food Science and Nutrition, 48 (3) (2008), pp. 257-275.
[3] Caruso et al., World Journal of Microbiology & Biotechnology, 18 (2002), pp. 159-163.
[4] Konakovsky et al. Food Additives & Contaminants, 28 (4) (2011), pp. 408-416.
[5] Filipe-Ribeiro et al. LWT – Food Science and Technology 115 (2019) pp.108488.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Filipe-Ribeiro Luís1, Milheiro Juliana1, Ferreira Leonor C.1, Correia Elisete2, Cosme Fernanda1 and M. Nunes Fernando

1Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Lab, University of Trás-os-Montes and Alto Douro
2Center for Computational and Stochastic Mathematics (CEMAT), Department of Mathematics, University of Trás-os-Montes and Alto Douro

Contact the author

Keywords

Red wine; Biogenic amines; Dekkera/Brettanomyces; Ethylphenols; Histamine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Organic mulches slightly influence wine phenolic composition and sensorial properties

Grapevines have traditionally been grown in semi-arid areas, but viticulture is now compromised by climate change. Therefore, it is necessary to implement environmentally friendly viticulture practices to adapt grapevines to current climatic conditions. In this context, organic mulches offer many benefits, such as reduced soil erosion and increased organic matter, soil water content and crop productivity. However, these practices must not compromise grape and wine quality. Therefore, the objective of this study was to evaluate the effect on wine physicochemical and phenolic composition and sensorial properties of different soil management practices on the vine row. Over four years, five soil treatments were examined in two different vineyards.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Anticipating consumer preference for low-alcohol wine: a machine learning analysis based on consumption habits and socio-demographics

The global wine consumption landscape is undergoing a transformation, marked by a growing trend towards reduced consumption and a preference for healthier lifestyles. In line with this shift, european union regulation (regulation eu 2021/2117) has recently redefined dealcoholized or partially dealcoholized wine within the wine category.

Influence of successive oxygen saturations of a grape juice, supplemented or not with laccase, on its color and hydroxycinnamic acids concentration

Aim: This work studies how successive O2 saturations affects the color and hydroxycinnamic
acids concentration in the absence and presence of laccase from B. cinerea with the aim of better understanding the browning processes.

Materials and methods: Grapes of Muscat of Alexandria were harvested and pressed with a vertical press to extract 60% of their juice. Aliquots of 30 mL of this must were placed in 60 mL flasks equipped with a pill (PreSens Precision Sensing GmbH) for measuring oxygen by luminescence (Nomasense TM O2 Trace Oxygen Analyzer).