terclim by ICS banner
IVES 9 IVES Conference Series 9 IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

IMPACT OF CLIMATIC CONDITIONS ON THE SEASONING QUALITY OF OAK WOOD FOR OENOLOGICAL USE (QUERCUS PETRAEA)

Abstract

For coopers, seasoning and toasting are considered crucial steps in barrel making during which the oak wood develops specific organoleptic properties. Seasoning, carried out in the open air, allows reducing the moisture content of the staves to between 14 and 18% (compared to 70 to 90% after splitting) while modulating the intrinsic composition of the oak wood. Toasting consists of applying different degrees of heat to a barrel for a specific period of time. As the temperature increases, oak wood produces a wide range of chemical compounds through thermal degradation of its intrinsic composition. Many studies have been conducted to identify the key aroma compounds in oak wood, and in a recent work we re-ported the identification of two new unsaturated aldehydes responsible for the “puff pastry” and “me-tallic” nuances present in toasted oak wood aroma: (2E,4E,6Z)-nonatrienal (I) and trans-4,5-epoxy-(E)-2- decenal (II).1 In foods, these aldehydes are derived from the oxidative degradation of linolenic and linoleic acids, respectively. This degradation is promoted by heat, light and metal ions. However, no data are available on the presence of fatty acids in oak wood for oenological use (Quercus petraea). In this context, this work aimed to study the distribution of fatty acids in oak wood by focusing on the seaso-ning process taking into account the impact of climatic conditions. To do so, we studied in parallel the evolution and distribution of unsaturated aldehydes and fatty acids in seven oak wood staves during the seasoning process (0, 12, 18 and 36 months) depending on the location (Merpins, Châlon-en-Cham-pagne and Beaumes-de-Venise). They were selected for their climatic diversity (average temperature and rainfall). Based on this experimental protocol, 84 samples were analyzed. The study of unsaturated aldehydes was carried out by GC-NCI-MS (NH₃) analysis, while the study of fatty acids required the de-velopment of a quantification method by GC-TOF MS analysis after liquid-liquid extraction and deriva-tisation. The results show a significant impact of climatic conditions on the distribution of unsaturated aldehydes and fatty acids. For example, the highest levels of unsaturated aldehydes (1.5 ng/g wood (I) and 13.2 ng/g wood (II)) were detected in oak wood seasoned in Merpins and Beaumes-de-Venise (southern France) compared to that seasoned in Châlon-en-Champagne (northern France). Conversely, linolenic acid was detected at a higher level in seasoned oak wood in Châlon-en-Champagne (9.5 µg/g wood). It is likely that “warm” climates lead to a degradation of fatty acids in favor of the formation of unsaturated aldehydes. These new results underline the potential effect of global warming on the quality and sensory identity of oak wood and barrels. To go further, these samples were also toasted. The impact on the aroma of red wine will be discussed.

 

1. Courregelongue, M., Shinkaruk, S., Prida, A., Darriet, P., & Pons, A. (2022). Identification and Distribution of New Impact Aldehydes in Toasted Oak Wood ( Quercus petraea ). Journal of Agricultural and Food Chemistry, acs.jafc.2c01828. https://doi.org/10.1021/acs.jafc.2c01828

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Marie Courregelongue 1,2,3, Andrei Prida 3, Alexandre Pons 1,2,3

1. Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d’Ornon, France
2. Bordeaux Sciences Agro, F-33170 Gradignan, France
3. Seguin Moreau Cooperage, ZI Merpins, F-16103 Cognac, France

Contact the author*

Keywords

oak wood, fatty acids, unsaturated aldehydes, climate change

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

POTENTIAL DEACIDIFYING ROLE OF A COMMERCIAL CHITOSAN: IMPACT ON PH, TITRATABLE ACIDITY, AND ORGANIC ACIDS IN MODEL SOLUTIONS AND WHITE WINE

Chitin is the main structural component of a large number of organisms (i.e., mollusks, insects, crustaceans, fungi, algae), and marine invertebrates including crabs and shrimps. The main derivative of chitin is chitosan (CH), produced by N-deacetylation of chitin in alkaline solutions. Over the past decade, the OIV/OENO 338A/ 2009 resolution approved the addition of allergen-free fungoid CH to must and wine as an adjuvant for microbiological control, prevention of haziness, metals chelation and ochratoxins removal (European Commission. 2011). Despite several studies on application of CH in winemaking, there are still very limited and controversial data on its interaction with acidic components in wine (Colan-gelo et al., 2018; Castro Marin et al., 2021).

Searching for the sweet spot: a focus on wine dealcoholization

It is well known that the vinification of grapes at full maturation can produce rich, full-bodied wines,
with intense and complex flavour profiles. However, the juice obtained from such grapes may have very
high sugar concentration, resulting in wines with an excessive concentration of ethanol. In addition, the decoupling between technological maturity and phenolic/aromatic one due to global warming, exacerbates this problem in some wine-growing regions. In parallel with the increase of the mean alcohol content of wines on the market, also the demand for reduced alcohol beverages has increased in recent years, mainly as a result of health and social concerns about the risks related to the consumption of alcohol.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

EXTRACTIBLE COMPOUNDS FROM MICROAGGLOMERATED CORK STOPPERS

After bottling, the wine continues to evolve during storage. The choice of the stopper is an important factor in this evolution. In addition to the oxygen permeability of the closure, the migration of stopper compounds into the wine can also have an impact on the wine organoleptic properties. Many studies have shown that transfers of volatile compounds from the stoppers into the wine can happen depending on the type of closure used (1). Moreover, when cork-made stoppers are used, the migration of phenolic compounds from the stopper into the wine can also occur (2, 3).

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.