IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Abstract

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine). In wine, the biogenic amines have three possible origins, they can be present in the grape juice, can be formed during alcoholic fermentation by yeasts, or during malolactic fermentation by the action of lactic acid bacteria that can decarboxylate amino acids present in wine. Therefore, the main request for the formation of biogenic amines is the presence of free amino acids, the existence of decarboxylase-positive microorganisms, and environmental conditions that permit bacterial growth and decarboxylase synthesis and activity [1]. In low levels, biogenic amines contribute to physiological functions like regulation of stomach pH, body temperature, or brain activity. Nevertheless, the ingestion of wines comprising high levels of biogenic amines, numerous toxicological effects may happen for example headaches, nausea, and in severe situations intracerebral hemorrhage or even death [2].
Monitoring the existence of these compounds in wine is essential, not only from the toxicological perspective but also as an indicator of wine spoilage [3]. In this work, a simple dispersive solid-phase extraction (dSPE) was developed for sample clean-up and pre-concentration of biogenic amines in wine. The dSPE using a strong cation exchange resin increased the selectivity and sensitivity of the analysis by elimination of interfering compounds and a five-fold enrichment of biogenic amines. The derivatization with benzoyl chloride and then the extraction with diethyl ether steps were optimized. HPLC with diode array detector was used as an analytical technique and this method was validated for twelve biogenic amines – ethylamine, propylamine, butylamine, putrescine, cadaverin, typtamine, b-phenylethylamine, amylamine, spermidine, hexylamine, spermine, and histamine. The method presented an adequate precision and linearity with detection limits ranging from 0.133 to 0.509 mg/L. Recoveries ranging from 72 to 99% prove the accuracy of the method for determining biogenic amines in red, white, and Tawny Port wine samples yielding chromatograms clean from interferents [4]. The method was applied successfully to the analysis of 31 young commercial red wines from the 2016 vintage collected in wineries located in different Portuguese demarcated wine regions. The dSPE method developed is a simple, cheap, quick, and green sample clean-up strategy for biogenic amine analysis. Increasing their selective and sensitive UV detection, the more used detector in liquid chromatography. The results indicated that this method is suitable for the intended purpose with a good recovery, precision, detection, and quantification limits, and with a suitable range for the amounts of biogenic amines existing in wine. 

References

[1]R. E. Anli, M. Bayram, Food Reviews International, 25:1 (2008) 86-102.
[2] A. C. Manetta, L. D. Guiseppe, R., Tofalo, M. Martuscelli, M. Schirone, M. Giammarco, G. Suzzi. Food Control. 2016. 65, 351-356.
[3] L. Beneduce, A. Romano, V. Capozzi, P. Lucas, L. Barnavon, B. Bach, P. Vuchot, F. Grieco, G. Spano. Ann. Microbiol. 2010, 60, 573-578.
[4]J. Milheiro, L. C. Ferreira, L. Filipe-Ribeiro, F. Cosme, F. M. Nunes, Food Chemistry, 274 (2019) 110-117.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cosme Fernanda1, Milheiro Juliana1, Ferreira Leonor C.1, Filipe-Ribeiro Luís1 and Nunes Fernando M.1

1Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment

Contact the author

Keywords

Red wine; Biogenic amines; Dispersive solid phase extraction; Derivatization, Histamine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aspects concernant les relations entre quelques composantes de la biomasse viticole, en fonction de l’offre des ressources écologiques

Ecological resources represent vegetation factors, or even production factors, in quantitative expression. These, used by plants, transformed and organized according to their genetic program, become the material components of biomass. Subsequently, the ecological resources can be used as synthetic indicators of the ecological supply, necessary for the analysis of favorability for the understanding of ecosystems.

Agri-photovoltaics: first experience above Riesling vines

Agri-photovoltaics (apv) describes the dual use of an agricultural area for food production and solar power generation. There are already a number of systems in operation around the world with various crops and under a wide range of different set-ups. In large parts, they still allow mechanical cultivation and other positive side effects of an APV system were observed in addition to the increase in utilization in the form of electricity and food: effects on the water balance and passive protection against extreme weather events.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Impact of deficit irrigation strategies on terpene concentration in Gewürztraminer grapes

Deficit irrigation is a viticultural practice often applied to improve the phenolic composition of red grapes and wines. However, the impact of this practice on grape terpenes – key aromatics for several grapes and wines – remains largely unknown. This study investigated the impact of deficit irrigation strategies on free and glycosylated terpenes in Gewürztraminer grapes. In a field study conducted in Oliver, BC, in 2016, 2017, and 2018, deficit irrigation regimes were applied to Gewürztraminer vines at different developmental stages (pre-veraison = Early Deficit, ED; post-veraison = Late Deficit, LD; throughout the season = Prolonged Deficit, PD). A well-irrigated control (CN) treatment was also established.

Can varietal ‘apricot’ aroma of Viognier wine be controlled with clonal selection and harvest timing?

Recent wine-like reconstitution sensory studies confirmed that several monoterpenes were the key aroma compounds in the perception of an ‘apricot’ aroma attribute in Viognier wine.