Terroir 2006 banner
IVES 9 IVES Conference Series 9 Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

Recommended grapevine varieties for the vineyards zone Vrsac and trend meteorological elements

Abstract

The aim of this paper was to analyze trends of the meteorological elements and determine suitability of growing grapevine cultivar in viticulture region. Trend analyses were done, based on the data for South-Banat sub-region, an important resource for the production of grapes and wines in Pannonia plain (Vršac:H = 83 m, φ=45 09 N, λ=21 19 E). Trend of significance for the 95% level of confidence, for mean air temperature and sunshine duration, was obtained for the May-June period. For those elements, trend was increasing us well us for the precipitation in September.
Vineyard personnel are beginning to change list of some cultivars and develop new techniques for producing better fruit. These technologies such as tailoring vine care on a row-by-row and even plant–by-plant basis may prove of value in adapting vineyard to climate change. Based on trend analysis and obtained results, correction of the list of the recommended wine and table grapevine cultivars for this vinegrowing region was done. We are recommending the following mid-early season grapevine cultivars: Pinot Nero R-4, Gammy 222, Pinot gris R-6 and VCR-5, Pinot Blanco VCR 1, Chardonnay VCR 4, Riesling Renaro R2, Riesling 21, Riesling 198, Riesling Italico SK 61, SK 54 and SK 13, Sauvignon Blanc R1, Traminer Gewurz R-1, VCR-6. From the list of the table cultivars we are recommending Muscat of Banat, Muscat of Hamburg clone 192, 197, 198 and Becman.
From the new grapevine cultivars, created at the Faculty Agriculture in Zemun, Department for Viticulture, we are recommending cv. Godominka (selfpolination of Dymiat) Negotinka (Pinot Noir x Zacinak). By choosing grapevine rootstocks, priority has the fooling rootstocks Teleki 5C G-52, SO4 G-47 and Kober 5BB G-114.

DOI:

Publication date: January 11, 2022

Issue: Terroir 2006

Type: Article

Authors

Branislava SIVČEV, Nevena PETROVIĆ and Ivana TOŠIĆ

University of Belgrade, Faculty of Agriculture, Nemanjina 6, 11081 Zemun, Serbia

Contact the author

Keywords

climatic changes, grapevine cultivar list, trends

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Hemisynthesis, NMR Characterization and UHPLC-Q-Orbitrap /MS² identification of (+)-Catechin oxidation products in red wines and grape seed extracts

(+)-Catechin—laccase oxidation dimeric standards were hemi-synthesized using laccase from Trametes versicolor in a water-ethanol solution at pH 3.6.

Metabolomic profiling of heat-stressed grape berries 

The projected rise in mean air temperatures together with the frequency, intensity, and length of heat waves in many wine-growing regions worldwide will deeply impact grape berry development and quality. Several studies have been conducted and a large set of molecular data was produced to better understand the impact of high temperatures on grape berry development and metabolism[1]. According to these data, it is highly likely that the metabolomic dynamics could be strongly modulated by heat stress (HS).

Proteomic and activity characterization of exocellular laccases from three Botrytis cinerea strains

Botrytis cinerea is a fungus that causes common infection in grapes and other fruits. In winemaking, its presence can be both considered desirable in the case of noble rot infection or undesirable when grey rot is developed. This fungus produces an extracellular enzyme known as laccase which is able to cause oxidation of phenolic compounds present in must and wine, causing most of the times a decrease in its quality and problems during the winemaking process [1]. Material and methods: Three B. cinerea strains (B0510, VA612 and RM344) were selected and grown in a liquid medium adapted from one previously described [2]. The enzyme was isolated by tangential ultrafiltration of the culture medium using a QuixStand system equipped with a 30 KDa filtration membrane.

Electrochemical diversity of italian white wines

Analysis of phenolic compounds typically involve spectrophotometric methods as well as liquid chromatography combined with DAD, fluorimetric, or MS detection. However, the complexity of wine phenolic composition generated, in recent years, attention towards other analytical approaches, including those allowing rapid and inexpensive operations. Voltametric AIM Oxidation of white wine phenolics occurs at different stages during winemaking and storage and can have important implications for wine sensory quality. Phenolic compounds, in particular those with a ortho-diphenol moiety, are main target of oxidation in wine. Strategies for the methods are particularly suited for the analysis of oxidizable compounds such as phenolics. The redox-active species can be oxidized and reduced at the electrode, therefore, applications of electrochemistry have been developed both to quantify such species, and to probe wine maturation processes.3 The project on the diversity of Italian wines aims at collecting and analysing large-scale compositional dataset related to Italian white wines.

Effect of drought on grapevine wood fungal pathogen communities using a metatranscriptomics approach

Crops are facing increasing biotic and abiotic stress pressures due to global changes. However, trade-off mechanisms between these stresses and the underlying physiological processes are still poorly understood, especially in perennial crop species. To better understand these trade-offs, we studied the effect of drought on grapevine (Vitis vinifera) physiology and esca-related wood fungal communities. Esca is a vascular disease caused by a community of wood-infecting pathogenic fungi, and characterized by trunk necrosis, leaf scorch symptoms, yield losses, and mortality.