Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method
Abstract
Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine). In wine, the biogenic amines have three possible origins, they can be present in the grape juice, can be formed during alcoholic fermentation by yeasts, or during malolactic fermentation by the action of lactic acid bacteria that can decarboxylate amino acids present in wine. Therefore, the main request for the formation of biogenic amines is the presence of free amino acids, the existence of decarboxylase-positive microorganisms, and environmental conditions that permit bacterial growth and decarboxylase synthesis and activity [1]. In low levels, biogenic amines contribute to physiological functions like regulation of stomach pH, body temperature, or brain activity. Nevertheless, the ingestion of wines comprising high levels of biogenic amines, numerous toxicological effects may happen for example headaches, nausea, and in severe situations intracerebral hemorrhage or even death [2].
Monitoring the existence of these compounds in wine is essential, not only from the toxicological perspective but also as an indicator of wine spoilage [3]. In this work, a simple dispersive solid-phase extraction (dSPE) was developed for sample clean-up and pre-concentration of biogenic amines in wine. The dSPE using a strong cation exchange resin increased the selectivity and sensitivity of the analysis by elimination of interfering compounds and a five-fold enrichment of biogenic amines. The derivatization with benzoyl chloride and then the extraction with diethyl ether steps were optimized. HPLC with diode array detector was used as an analytical technique and this method was validated for twelve biogenic amines – ethylamine, propylamine, butylamine, putrescine, cadaverin, typtamine, b-phenylethylamine, amylamine, spermidine, hexylamine, spermine, and histamine. The method presented an adequate precision and linearity with detection limits ranging from 0.133 to 0.509 mg/L. Recoveries ranging from 72 to 99% prove the accuracy of the method for determining biogenic amines in red, white, and Tawny Port wine samples yielding chromatograms clean from interferents [4]. The method was applied successfully to the analysis of 31 young commercial red wines from the 2016 vintage collected in wineries located in different Portuguese demarcated wine regions. The dSPE method developed is a simple, cheap, quick, and green sample clean-up strategy for biogenic amine analysis. Increasing their selective and sensitive UV detection, the more used detector in liquid chromatography. The results indicated that this method is suitable for the intended purpose with a good recovery, precision, detection, and quantification limits, and with a suitable range for the amounts of biogenic amines existing in wine.
References
[1]R. E. Anli, M. Bayram, Food Reviews International, 25:1 (2008) 86-102.
[2] A. C. Manetta, L. D. Guiseppe, R., Tofalo, M. Martuscelli, M. Schirone, M. Giammarco, G. Suzzi. Food Control. 2016. 65, 351-356.
[3] L. Beneduce, A. Romano, V. Capozzi, P. Lucas, L. Barnavon, B. Bach, P. Vuchot, F. Grieco, G. Spano. Ann. Microbiol. 2010, 60, 573-578.
[4]J. Milheiro, L. C. Ferreira, L. Filipe-Ribeiro, F. Cosme, F. M. Nunes, Food Chemistry, 274 (2019) 110-117.
DOI:
Issue: IVAS 2022
Type: Poster
Authors
1Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment
Contact the author
Keywords
Red wine; Biogenic amines; Dispersive solid phase extraction; Derivatization, Histamine.