IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Abstract

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine). In wine, the biogenic amines have three possible origins, they can be present in the grape juice, can be formed during alcoholic fermentation by yeasts, or during malolactic fermentation by the action of lactic acid bacteria that can decarboxylate amino acids present in wine. Therefore, the main request for the formation of biogenic amines is the presence of free amino acids, the existence of decarboxylase-positive microorganisms, and environmental conditions that permit bacterial growth and decarboxylase synthesis and activity [1]. In low levels, biogenic amines contribute to physiological functions like regulation of stomach pH, body temperature, or brain activity. Nevertheless, the ingestion of wines comprising high levels of biogenic amines, numerous toxicological effects may happen for example headaches, nausea, and in severe situations intracerebral hemorrhage or even death [2].
Monitoring the existence of these compounds in wine is essential, not only from the toxicological perspective but also as an indicator of wine spoilage [3]. In this work, a simple dispersive solid-phase extraction (dSPE) was developed for sample clean-up and pre-concentration of biogenic amines in wine. The dSPE using a strong cation exchange resin increased the selectivity and sensitivity of the analysis by elimination of interfering compounds and a five-fold enrichment of biogenic amines. The derivatization with benzoyl chloride and then the extraction with diethyl ether steps were optimized. HPLC with diode array detector was used as an analytical technique and this method was validated for twelve biogenic amines – ethylamine, propylamine, butylamine, putrescine, cadaverin, typtamine, b-phenylethylamine, amylamine, spermidine, hexylamine, spermine, and histamine. The method presented an adequate precision and linearity with detection limits ranging from 0.133 to 0.509 mg/L. Recoveries ranging from 72 to 99% prove the accuracy of the method for determining biogenic amines in red, white, and Tawny Port wine samples yielding chromatograms clean from interferents [4]. The method was applied successfully to the analysis of 31 young commercial red wines from the 2016 vintage collected in wineries located in different Portuguese demarcated wine regions. The dSPE method developed is a simple, cheap, quick, and green sample clean-up strategy for biogenic amine analysis. Increasing their selective and sensitive UV detection, the more used detector in liquid chromatography. The results indicated that this method is suitable for the intended purpose with a good recovery, precision, detection, and quantification limits, and with a suitable range for the amounts of biogenic amines existing in wine. 

References

[1]R. E. Anli, M. Bayram, Food Reviews International, 25:1 (2008) 86-102.
[2] A. C. Manetta, L. D. Guiseppe, R., Tofalo, M. Martuscelli, M. Schirone, M. Giammarco, G. Suzzi. Food Control. 2016. 65, 351-356.
[3] L. Beneduce, A. Romano, V. Capozzi, P. Lucas, L. Barnavon, B. Bach, P. Vuchot, F. Grieco, G. Spano. Ann. Microbiol. 2010, 60, 573-578.
[4]J. Milheiro, L. C. Ferreira, L. Filipe-Ribeiro, F. Cosme, F. M. Nunes, Food Chemistry, 274 (2019) 110-117.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cosme Fernanda1, Milheiro Juliana1, Ferreira Leonor C.1, Filipe-Ribeiro Luís1 and Nunes Fernando M.1

1Chemistry Research Centre-Vila Real (CQ-VR), Food and Wine Chemistry Laboratory, University of Trás-os-Montes and Alto Douro, School of Life Sciences and Environment

Contact the author

Keywords

Red wine; Biogenic amines; Dispersive solid phase extraction; Derivatization, Histamine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

Implications of grapevine row orientation in South Africa

Row orientation is a critical long-term viticulture practice, which may have a determining effect on grape and wine quality as well as cost efficiency on a specific terroir selected for cultivation.

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg.

Use of mathematical modelling and multivariate statistical process control during alcoholic fermentation of red wine

Cyberphysical systems can be seen in the wine industry in the form of precision oenology. Currently, limitations exist with established infrared chemometric models and first principle mathematical models in that they require a high degree of sample preparation, making it inappropriate for use in-line,

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.