IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Abstract

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma. While there is substantial work in relating tropical fruit aroma exclusively to volatile thiols, the assessment of any other compound and their interactions that may cause this aroma are yet unexplored. Previous work suggests that esters, when in combination with thiols in a wine media, play a role in tropical fruit perception as an aroma enhancer to thiol-related aroma attributes. Moreover, the highly fruity sensory profile of this family caused consumers and a trained panel to smell tropical fruit aromas in a wine model spiked with acetate and ethyl esters. In the same sensory study, samples that contained only thiols resulted in grass and earthy aromas, and not tropical fruit aromas as expected. Thus, this prior study showed that, while the presence of thiols is critical to tropical fruit perception, other aroma families, such as esters, also caused this aroma.
Considering that the presence of esters and thiols are crucial to tropical fruit aroma perception, the work herein investigated specific winemaking procedures that could increase both aroma families, esters and thiols, in white wines. Chardonnay grapes were harvested at the OSU Woodhall vineyard and processed at the OSU research winery during the 2020 vintage. The control (standard winemaking) and four treatments were evaluated: skin contact (10˚C for 18 hours), enzyme addition (β-lyase, 40 μl/L), and two fermentation gradient temperature procedures (FGT 1: start at 20˚C and after 100h change to 13˚C; FGT 2: start at 20˚C and after ~12˚Brix change to 13˚C). A full factorial design containing all possible treatment combinations was proposed, totaling 12 wines performed in triplicate, resulting in 36 microferments. To ensure that the results did not occur due to chance but due to the processes investigated, the design was fully repeated and the same procedures were followed, totaling 72 microferments. An ester method (HS-SPME GCMS) was developed to measure approximately 40 ethyl and acetate esters. The volatile thiols 3-MH, 3-MHA and 4-MMP were quantified using a method by Capone et al. (201%). A three-way ANOVA model was performed on the total concentrations of esters and thiols. Skin contact, fermentation gradient temperature and their interaction effect played a significant effect in the concentration of thiols. Significant differences were observed in skin contact and both FGT treatments for esters, but their interaction was not significant. Finally, the interaction of skin contact and FGT 1 resulted in the highest concentrations of both esters and thiols. As a future study, skin contact and FG 1 will be scaled up in a full factorial design to evaluate the sensory perception and consumer acceptance of these wines.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Tomasino Elizabeth1 and Iobbi Angelica1

1Oregon State University

Contact the author

Keywords

Esters, skin contact, volatile thiols, fermentatiomn gradient, lyase

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grape ripening timing as a base for viticultural zoning: an agro-ecological approach

Due to the central role of the ripening timing in the evaluation of the varietal response to the environmental resources, a method to manage maturation curves has been developed. The method produces an index of veraison precocity and overcomes several methodological problems, like the visual evaluation of the veraison point and the multi-annual and multi-varieties data processing. It is based on a statistical and mathematical processing of the sugar ripening curves.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

Impact of varying ethanol and carbonation levels on the odor threshold of 1,1,6-trimethyl-1,2-dihydronaphtalene (petrol off-flavor) and role of berry size and Riesling clones

1,1,6-trimethyl-1,2-dihydronaphtelene (TDN) evokes the odor of “petrol” in wine, especially in the variety Riesling. Increasing UV-radiation due to climate change intensifies formation of carotenoids in the berry skins and an increase of TDN-precursors1. Exploring new viticultural and oenological strategies to limit TDN formation in the future requires precise knowledge of TDN thresholds in different matrices. Thresholds reported in the literature vary substantially between 2 µg/L up to 20 µg/L2,3,4 due to the use of different methods. As Riesling grapes are used for very different wine styles such as dry, sweet or sparkling wines, it is essential to study the impact of varying ethanol and carbonation levels.

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.