IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Achieving Tropical Fruit Aromas in White Wine through Innovative Winemaking Processes

Abstract

Tropical fruit aroma is highly desirable in certain white wine styles and there is a significant group of consumers that show preference for this aroma. While there is substantial work in relating tropical fruit aroma exclusively to volatile thiols, the assessment of any other compound and their interactions that may cause this aroma are yet unexplored. Previous work suggests that esters, when in combination with thiols in a wine media, play a role in tropical fruit perception as an aroma enhancer to thiol-related aroma attributes. Moreover, the highly fruity sensory profile of this family caused consumers and a trained panel to smell tropical fruit aromas in a wine model spiked with acetate and ethyl esters. In the same sensory study, samples that contained only thiols resulted in grass and earthy aromas, and not tropical fruit aromas as expected. Thus, this prior study showed that, while the presence of thiols is critical to tropical fruit perception, other aroma families, such as esters, also caused this aroma.
Considering that the presence of esters and thiols are crucial to tropical fruit aroma perception, the work herein investigated specific winemaking procedures that could increase both aroma families, esters and thiols, in white wines. Chardonnay grapes were harvested at the OSU Woodhall vineyard and processed at the OSU research winery during the 2020 vintage. The control (standard winemaking) and four treatments were evaluated: skin contact (10˚C for 18 hours), enzyme addition (β-lyase, 40 μl/L), and two fermentation gradient temperature procedures (FGT 1: start at 20˚C and after 100h change to 13˚C; FGT 2: start at 20˚C and after ~12˚Brix change to 13˚C). A full factorial design containing all possible treatment combinations was proposed, totaling 12 wines performed in triplicate, resulting in 36 microferments. To ensure that the results did not occur due to chance but due to the processes investigated, the design was fully repeated and the same procedures were followed, totaling 72 microferments. An ester method (HS-SPME GCMS) was developed to measure approximately 40 ethyl and acetate esters. The volatile thiols 3-MH, 3-MHA and 4-MMP were quantified using a method by Capone et al. (201%). A three-way ANOVA model was performed on the total concentrations of esters and thiols. Skin contact, fermentation gradient temperature and their interaction effect played a significant effect in the concentration of thiols. Significant differences were observed in skin contact and both FGT treatments for esters, but their interaction was not significant. Finally, the interaction of skin contact and FGT 1 resulted in the highest concentrations of both esters and thiols. As a future study, skin contact and FG 1 will be scaled up in a full factorial design to evaluate the sensory perception and consumer acceptance of these wines.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Tomasino Elizabeth1 and Iobbi Angelica1

1Oregon State University

Contact the author

Keywords

Esters, skin contact, volatile thiols, fermentatiomn gradient, lyase

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.

Effects of different soil types and soil management on greenhouse gas emissions 

Soil is important in the carbon cycle and the dynamics of greenhouse gases (CO2, CH4 and N2O). Key soil characteristics, such as organic matter content, texture, structure, pH and microbial activity, play a determining role in GHG emissions[1]. The objective of the study is to delimit different types of soil, with different soil management and to be able to verify the differences in CO2, CH4 and N2O emissions. The study was carried out in a vineyard of Bodegas Campo Viejo in Logroño (La Rioja), whose plant material is Vitis vinifera L. cv. Tempranillo.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.

Soils and plant material in prestigious Bordeaux vineyards impacts on yield and quality

High resolution soil maps (scale : 1/3000) were created for seven of the most prestigious red wine producing estates in Bordeaux, covering in total approximately 400 ha.

Indice bioclimatique de qualité Fregoni

La viticulture dans le monde est sous l’étroite dépendance des conditions climatiques. En effet, la culture de la vigne est concentrée entre 30° et 50° de latitude Nord et 30° à 40° de latitude Sud