IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Abstract

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process. In this work, Syrah red wines were made by different winemaking technologies, i.e., traditional fermentation on skin (total 7 days of maceration), prolonged maceration with addition of extra skins at the end of traditional fermentation (total 14 days of maceration) and prolonged maceration with addition of extra stems at the end of traditional fermentation (total 14 days of maceration). After 8 years of ageing in bottle, the structural composition of polymeric polyphenols in these wines was comprehensively analysed through different degradation methods (hydrochloric acid hydrolysis, NaOH hydrolysis and Benzyl mercaptan hydrolysis), followed by HPLC-FT-ICR-MS, HPLC/UPLC-MS analysis. The results showed that the molecules of polymeric polyphenols in the aged red wines were composed of not only proanthocyanidins but also anthocyanins, amino acids and phenolic acids. The percentages of the constitutive units of the polymeric polyphenol molecules in these wines varied considerably, being catechin (7.1 – 14.9%), epicatechin (74.5 – 78.2%), epicatechin-3-O-gallate (5.8 – 12.2%), amino acids (0.7 – 1.5%), phenolic acids (0.0 – 0.9%) anthocyanins (0.1 – 0.4%) and epigallocatechin (0.7 – 4.7%),  depending on the type of the winemaking technologies. Catechin, epicatechin and epicatechin-3-O-gallate were presented as both terminal and extension units, with the latter predominant, while amino acids, phenolic acids and anthocyanins were found to be presented exclusively as terminal units and epigallocatechin was found to be presented exclusively as extension units. Comparing with the wine made by traditional fermentation on skin, the lower phenolic acids and anthocyanins units was found in the wine made by prolonged fermentation/maceration with skin and with stem. The prolonged fermentation/maceration with skin was found to have highest amino acids units. On the other hand, different vinification technologies affected the mean polymerization degrees (mDP) of polymeric polyphenols in the aged red wines, being mDP 25.2 for the control one, mDP 13.1 for the wine made by the prolonged fermentation with skin and mDP 15.7 for the prolonged fermention with stem. These results indicated that, different winemaking technologies affect significantly the structural features of polymeric polyphenols.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sun Baoshan1, Jian Zhao3, Tingting Yang1, Martins Patrícia2, Ramos João4 and Lingxi Li1

1School of Functional Food and Wine, Shenyang Pharmaceutical University
2Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P.

3School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
4Departamento de Enologia, Herdade do Esporão, Reguengos de Monsaraz

Contact the author

Keywords

polymeric polyphenols; winemaking technology; structural composition; aged red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Terroir aspects in development of quality of Egri bikavér

Egri Bikavér (Bull’s Blood) is one of the most remarkable Hungarian red wines on inland and foreign markets as well. From the end of the 70’s the quality of Egri Bikavér was decreasing continually due to mass production. The concept of production of quality wines became general in the mid 90’s again and it resulted in a new Origin Control System, for the first time that of Egri Bikavér in Hungary.

Wine archeochemistry: a multiplatform analytical approach to chemically profile shipwreck wines

The Cape of Storms (also known as Cape of Good Hope) is renowned for harbouring a multitude of shipwrecks due to the inherent treacherous coastline and blistering storms.

Study of intramolecular distribution of hydrogen isotopes in ethanol depending on deuterium content of water and the origin of carbohydrates

The paper presents the results of consistently developing studies carried out in 2022-2024 on the distribution of deuterium 2H(D) in intracellular water of grapes and wine products, taking into account the influence of natural, climatic and technogenic factors using high-resolution quantitative nuclear magnetic resonance spectroscopy 2H(D)-qNMR.

EXPLORING THE INFLUENCE OF S. CEREVISIAE MANNOPROTEINS ON WINE ASTRINGENCY AND THE IMPACT OF THEIR POLYSACCHARIDE STRUCTURE

Mannoproteins (MPs) are proteoglycans from the outmost layer of yeast cell walls released into wine during alcoholic fermentation and ageing on lees processes. The use of commercial preparations of mannoproteins as additives to improve wine stability with regards to the crystallization of tartaric salts and to prevent protein haze in the case of white and rosé wines is authorized by the OIV.
Regarding red wines and polyphenols, mannoproteins are described as able to improve their colloidal stability and modulate the astringent effect of condensed tannins. The latter interact with salivary proteins forming insoluble aggregates that cause a loss of lubrication in the mouth and promote a drying and puckering sensation. However, neither the interaction mechanisms involved in mannoproteins capacity to impact astringency nor the structure-function relationships related to this property are fully understood.

Application of remote and proximal sensors for precision vineyard management in Valpolicella

The integration of sensor systems in viticulture is significantly improving vineyard management by enabling faster, comprehensive crop data collection across the entire vineyard, supporting more informed viticultural decision-making, and as a result promoting sustainability.