IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Abstract

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process. In this work, Syrah red wines were made by different winemaking technologies, i.e., traditional fermentation on skin (total 7 days of maceration), prolonged maceration with addition of extra skins at the end of traditional fermentation (total 14 days of maceration) and prolonged maceration with addition of extra stems at the end of traditional fermentation (total 14 days of maceration). After 8 years of ageing in bottle, the structural composition of polymeric polyphenols in these wines was comprehensively analysed through different degradation methods (hydrochloric acid hydrolysis, NaOH hydrolysis and Benzyl mercaptan hydrolysis), followed by HPLC-FT-ICR-MS, HPLC/UPLC-MS analysis. The results showed that the molecules of polymeric polyphenols in the aged red wines were composed of not only proanthocyanidins but also anthocyanins, amino acids and phenolic acids. The percentages of the constitutive units of the polymeric polyphenol molecules in these wines varied considerably, being catechin (7.1 – 14.9%), epicatechin (74.5 – 78.2%), epicatechin-3-O-gallate (5.8 – 12.2%), amino acids (0.7 – 1.5%), phenolic acids (0.0 – 0.9%) anthocyanins (0.1 – 0.4%) and epigallocatechin (0.7 – 4.7%),  depending on the type of the winemaking technologies. Catechin, epicatechin and epicatechin-3-O-gallate were presented as both terminal and extension units, with the latter predominant, while amino acids, phenolic acids and anthocyanins were found to be presented exclusively as terminal units and epigallocatechin was found to be presented exclusively as extension units. Comparing with the wine made by traditional fermentation on skin, the lower phenolic acids and anthocyanins units was found in the wine made by prolonged fermentation/maceration with skin and with stem. The prolonged fermentation/maceration with skin was found to have highest amino acids units. On the other hand, different vinification technologies affected the mean polymerization degrees (mDP) of polymeric polyphenols in the aged red wines, being mDP 25.2 for the control one, mDP 13.1 for the wine made by the prolonged fermentation with skin and mDP 15.7 for the prolonged fermention with stem. These results indicated that, different winemaking technologies affect significantly the structural features of polymeric polyphenols.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sun Baoshan1, Jian Zhao3, Tingting Yang1, Martins Patrícia2, Ramos João4 and Lingxi Li1

1School of Functional Food and Wine, Shenyang Pharmaceutical University
2Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P.

3School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
4Departamento de Enologia, Herdade do Esporão, Reguengos de Monsaraz

Contact the author

Keywords

polymeric polyphenols; winemaking technology; structural composition; aged red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Zoning like base instrument for the agronomist’s work in vineyard

Ad una prima analisi l’interesse dimostrato dal settore produttivo nei confronti della zonazione vitivinicola è da ricondursi al fatto che dopo i primi approcci puramente accademici

Inactivated yeasts: a case study for the future of precision enology

Yeasts serve as highly versatile tools in oenology. They do more than just perform alcoholic fermentation. Nowadays, yeasts from various species, naturally present in grapes, are selected for specific non-fermentative applications. For example, the use of selected non-saccharomyces at the early stage of winemaking has become a common practice to limit the growth of unwanted microorganisms. When inactivated, yeasts can be fractionated into soluble and insoluble fractions providing a wide range of benefits related to structural components or specific metabolites.

Improvement of non-Saccharomyces yeast dominance during must fermentation by using spontaneous mutants resistant to SO2, EtOH and high pressure of CO2

AIM: A genetic study of four wine T. delbrueckii strains was done. Spore clones free of possible recessive growth‐retarding alleles with enhanced resistance to winemaking stressing conditions were obtained from these yeasts. METHODS: The genetic marker of resistance to cycloheximide (cyhR) allows easy monitoring of the new mutants obtained from these yeasts.

Influence of must fining on oxygen consumption rate, oxidation susceptibility and electrochemical characteristics of different white grape musts

AIM: Pre-fermentative fining is one of the central steps of white wine production. Mainly aiming at reducing the levels of suspended solids, juice fining can also assist in reducing the content of oxidizable phenolics and therefore the susceptibility of juice to oxidation.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.