IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Structural composition of polymeric polyphenols of red wine after long-term ageing: effect of vinification technology

Abstract

Aged red wines possess phenolic composition very different from young ones due to the transformations among native grape phenolics and the formation of new polymeric polyphenols during aging process. In this work, Syrah red wines were made by different winemaking technologies, i.e., traditional fermentation on skin (total 7 days of maceration), prolonged maceration with addition of extra skins at the end of traditional fermentation (total 14 days of maceration) and prolonged maceration with addition of extra stems at the end of traditional fermentation (total 14 days of maceration). After 8 years of ageing in bottle, the structural composition of polymeric polyphenols in these wines was comprehensively analysed through different degradation methods (hydrochloric acid hydrolysis, NaOH hydrolysis and Benzyl mercaptan hydrolysis), followed by HPLC-FT-ICR-MS, HPLC/UPLC-MS analysis. The results showed that the molecules of polymeric polyphenols in the aged red wines were composed of not only proanthocyanidins but also anthocyanins, amino acids and phenolic acids. The percentages of the constitutive units of the polymeric polyphenol molecules in these wines varied considerably, being catechin (7.1 – 14.9%), epicatechin (74.5 – 78.2%), epicatechin-3-O-gallate (5.8 – 12.2%), amino acids (0.7 – 1.5%), phenolic acids (0.0 – 0.9%) anthocyanins (0.1 – 0.4%) and epigallocatechin (0.7 – 4.7%),  depending on the type of the winemaking technologies. Catechin, epicatechin and epicatechin-3-O-gallate were presented as both terminal and extension units, with the latter predominant, while amino acids, phenolic acids and anthocyanins were found to be presented exclusively as terminal units and epigallocatechin was found to be presented exclusively as extension units. Comparing with the wine made by traditional fermentation on skin, the lower phenolic acids and anthocyanins units was found in the wine made by prolonged fermentation/maceration with skin and with stem. The prolonged fermentation/maceration with skin was found to have highest amino acids units. On the other hand, different vinification technologies affected the mean polymerization degrees (mDP) of polymeric polyphenols in the aged red wines, being mDP 25.2 for the control one, mDP 13.1 for the wine made by the prolonged fermentation with skin and mDP 15.7 for the prolonged fermention with stem. These results indicated that, different winemaking technologies affect significantly the structural features of polymeric polyphenols.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Sun Baoshan1, Jian Zhao3, Tingting Yang1, Martins Patrícia2, Ramos João4 and Lingxi Li1

1School of Functional Food and Wine, Shenyang Pharmaceutical University
2Pólo Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, I.P.

3School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University
4Departamento de Enologia, Herdade do Esporão, Reguengos de Monsaraz

Contact the author

Keywords

polymeric polyphenols; winemaking technology; structural composition; aged red wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Potential of native Uruguayan yeast strains for production of Tannat wine

Must fermentation is a complex process influenced by various factors, especially microbiological activities. The characteristics and quality of the resulting wine are closely linked to the stages that unfold throughout this progression.

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of

Understanding colloidal instability in white wine model solutions: A study focused on the effect of polysaccharides and salts onto bentonite efficiency

A white wine model solution (12% v/v ethanol, 4 g/L tartaric acid, pH 3.2) was used to assess wine colloidal instability as well as the influence of several wine components on bentonite performance in protein removal.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Grape pomace, an active ingredient at the intestinal level: Updated evidence

Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. GP-derived products have been proposed to manage cardiovascular risk factors, including endothelial dysfunction, inflammation, hypertension, hyperglycemia, and obesity. Studies on the potential impact of GP on gut health are much more recent. However, it is suggested that, to some extent, this activity of GP as a cardiometabolic health-promoting ingredient would begin in the gastrointestinal tract as GP components (i.e., (poly)phenols and fiber) undergo extensive catabolism, mainly by the action of the intestinal microbiota, that gives rise to low-molecular-weight bioactive compounds that can be absorbed and utilized by the body.