IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Abstract

Balsamic vinegars of Modena (Italy), namely Aceto Balsamico di Modena PGI (AB PGI) and Aceto Balsamico Tradizionale di Modena PDO (ABT PDO) are among the most important geographical indication products for Italy. ABT PDO, despite its very limited production, is recognized as one of the most representative Italian artisan gastronomic products, and it is known and commercialized all around the world. The economic value of ABT PDO (“affinato” and “extra-vecchio” types, depending on the aging), prepared following a traditional way and aged for many years in a set of barrels (transferring a certain amount of vinegar from one cask to another in a decreasing “topping up” procedure) is great, when compared to AB industrially prepared with caramel. AB PGI is certainly the most widespread industrial-type vinegar in the world, deriving from low-temperature condensed grape must (or cooked must) mixed with wine vinegar, obtaining balsamic vinegars with a caramel-like taste. Depending on its economic value, ABT PDO is often object of fraud, requiring to fight counterfeit products and imitations.
Head Space-GC-Ion Mobility Spectrometry (HS-GC-IMS) is a rapid chromatographic technique useful to obtain 2D separation of volatile compounds from foods, allowing to obtain a specific fingerprint of the aroma with no pre-treatment of the samples. During the last ten years, many applications were developed in food quality and authenticity areas using HS-GC-IMS.
Aim of the present study was to develop a quick authentication model for the recognition of the counterfeit ABT PDO products; different mixture (5, 10, 20%) prepared adding AB PGI in ABT PDO were analyzed, confirming the capacity to identify the presence of concentrated/cooked must-like products in ABT PDO in percentage less than 5% using this rapid method. Some key volatile compounds from AB PGI were easily identified using Kovats index. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Disca Vincenzo1, Rossini Cesare2, Wortelmann Thomas3 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2LabService Analytica s.r.l
3G.A.S. Gesellschaft für analytische Sensorsysteme mbH

Contact the author

Keywords

Vinegar; authentication; GC-IMS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

ECA&D: A high-resolution dataset for monitoring climate change and effects on viticulture in Europe

Climate change will lead to persistent changes in temperature and precipitation patterns which will affect the characteristics of wine produced in each region.

Cascading effects of spring weather conditions into grape berry ripening

The effects of climate change on viticulture are complex due to interactions among factors and cascading effects.

Chenin Blanc Old Vine character: evaluating a typicality concept by data mining experts’ reviews and producers’ tasting notes

Concepts such as typicality are difficult to demonstrate using the limited set of samples that can be subjected to sensory evaluation. This is due both to the complexity of the concept and to the limitations of traditional sensory evaluation (number of samples per session, panel fatigue, the need for multiple sessions and methods, etc.). On the other hand, there is a large amount of data already available, accumulated through many years of consistent evaluation. These data are held in repositories (such as Platter’s Wine Guide in the case of South Africa Wine, wineonaplatter.com) and in technical notes provided by the producers.

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].

Macromolecular characterization of disease resistant red wine varieties (PIWI)

Pilzwiderstandsfähige (PIWI) are disease resistant Vitis vinifera interspecific hybrid varieties that are receiving increasing attention for ability to ripen in cool climates and their resistance to grapevine fungal diseases. Wines produced from these varieties have not been characterized, especially regarding their macromolecular composition. This study characterised and quantified colloid-forming molecules (proteins, polysaccharides and phenolics) of red PIWI wines produced in the UK. METHODS: In 2019 6 wines were made from the PIWI varieties Rondo, Cabernet Jura, Cabernet Cortis, Cabernet Noir, Regent and Cabertin grown at the Plumpton Rock Lodge Vineyard in Sussex (UK) and harvested at similar level of maturity (TSS, pH and TA). All juice was chaptalized to the same potential alcohol of 12%. Small scale winemaking (1L) was performed in quadruplicate using Bodum® coffee plungers to manage maceration [1]. Residual sugar content, pH, and titratable acidity were monitored during fermentation. For finished wines, the protein and polysaccharide content was measured by HPLC-SEC [2], while the total phenolic content was assessed using the Folin-Ciocalteau method [3]. The protein profile of the wines was further investigated by SDS-PAGE [4]. RESULTS: Fermentations (n=24) were all carried out to completion within 8 days.