IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Abstract

Balsamic vinegars of Modena (Italy), namely Aceto Balsamico di Modena PGI (AB PGI) and Aceto Balsamico Tradizionale di Modena PDO (ABT PDO) are among the most important geographical indication products for Italy. ABT PDO, despite its very limited production, is recognized as one of the most representative Italian artisan gastronomic products, and it is known and commercialized all around the world. The economic value of ABT PDO (“affinato” and “extra-vecchio” types, depending on the aging), prepared following a traditional way and aged for many years in a set of barrels (transferring a certain amount of vinegar from one cask to another in a decreasing “topping up” procedure) is great, when compared to AB industrially prepared with caramel. AB PGI is certainly the most widespread industrial-type vinegar in the world, deriving from low-temperature condensed grape must (or cooked must) mixed with wine vinegar, obtaining balsamic vinegars with a caramel-like taste. Depending on its economic value, ABT PDO is often object of fraud, requiring to fight counterfeit products and imitations.
Head Space-GC-Ion Mobility Spectrometry (HS-GC-IMS) is a rapid chromatographic technique useful to obtain 2D separation of volatile compounds from foods, allowing to obtain a specific fingerprint of the aroma with no pre-treatment of the samples. During the last ten years, many applications were developed in food quality and authenticity areas using HS-GC-IMS.
Aim of the present study was to develop a quick authentication model for the recognition of the counterfeit ABT PDO products; different mixture (5, 10, 20%) prepared adding AB PGI in ABT PDO were analyzed, confirming the capacity to identify the presence of concentrated/cooked must-like products in ABT PDO in percentage less than 5% using this rapid method. Some key volatile compounds from AB PGI were easily identified using Kovats index. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Disca Vincenzo1, Rossini Cesare2, Wortelmann Thomas3 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2LabService Analytica s.r.l
3G.A.S. Gesellschaft für analytische Sensorsysteme mbH

Contact the author

Keywords

Vinegar; authentication; GC-IMS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Flavanol glycosides in grapes and wines : the key missing molecular intermediates in condensed tannin biosynthesis ?

Polyphenols are present in a wide variety of plants and foods such as tea, cacao and grape1. An important sub-class of these compounds is the flavanols present in grapes and wines as monomers (e.g (+)-catechin or (-)-epicatechin), or polymers also called condensed tannins or proanthocyanidins. They have important antioxidant properties2 but their biosynthesis remains partly unknown. Some recent studies have focused on the role of glycosylated intermediates that are involved in the transport of the monomers and may serve as precursors in the polymerization mechanism3, 4. The global objective of this work is to identify flavanol glycosides in grapes or wines, describe their structure and determine their abundance during grape development and in wine.

Influence of weather and climatic conditions on the viticultural production in Croatia

The research includes an analysis of the impact of weather conditions on phenological development of the vine and grape quality, through monitoring of four experimental cultivars (Chardonnay, Graševina, Merlot and Plavac mali) over two production years. In each experimental vineyard, which were evenly distributed throughout the regions of Slavonia and The Croatian Danube, Croatian Uplands,

IDENTIFYING POTENTIAL CHEMICAL MARKERS RESPONSIBLE FOR THE PERMISSIVENESS OF BORDEAUX RED WINES AGAINST BRETTANOMYCES BRUXELLENSIS USING UNTARGETED METABOLOMICS

All along the red winemaking process, many microorganisms develop in wine, some being beneficial and essential, others being feared spoilers. One of the most feared microbial enemy of wine all around the world is Brettanomyces bruxellensis. Indeed, in red wines, this yeast produces volatile phenols, molecules associated with a flavor described as “horse sweat”, “burnt plastic” or “leather”. To produce significant and detectable concentrations of these undesired molecules, the yeasts should first grow and become numerous enough. Even if the genetic group of the strain present and the cellar temperature may modulate the yeast growth rate¹ and thus the risk of spoilage, the main factor seems to be the wines themselves, some being much more permissive to B. bruxellensis development than others.

Use of membrane ultrafiltration technology to achieve protein stabilisation of white wine

AIM: Proteins in white wine can cause cloudiness or haze after bottling, which consumers may consider an indicator of poor quality. . As a consequence, winemakers often use bentonite, a clay-based material that binds protein, to remove proteins and achieve protein stabilisation. However, removing bentonite from wine after treatment can result in a 3-10% loss of wine (1)…

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.