IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Aceto Balsamico Tradizionale di Modena” PDO authenticity: detection of caramel-containing vinegar by HS-GC-IMS

Abstract

Balsamic vinegars of Modena (Italy), namely Aceto Balsamico di Modena PGI (AB PGI) and Aceto Balsamico Tradizionale di Modena PDO (ABT PDO) are among the most important geographical indication products for Italy. ABT PDO, despite its very limited production, is recognized as one of the most representative Italian artisan gastronomic products, and it is known and commercialized all around the world. The economic value of ABT PDO (“affinato” and “extra-vecchio” types, depending on the aging), prepared following a traditional way and aged for many years in a set of barrels (transferring a certain amount of vinegar from one cask to another in a decreasing “topping up” procedure) is great, when compared to AB industrially prepared with caramel. AB PGI is certainly the most widespread industrial-type vinegar in the world, deriving from low-temperature condensed grape must (or cooked must) mixed with wine vinegar, obtaining balsamic vinegars with a caramel-like taste. Depending on its economic value, ABT PDO is often object of fraud, requiring to fight counterfeit products and imitations.
Head Space-GC-Ion Mobility Spectrometry (HS-GC-IMS) is a rapid chromatographic technique useful to obtain 2D separation of volatile compounds from foods, allowing to obtain a specific fingerprint of the aroma with no pre-treatment of the samples. During the last ten years, many applications were developed in food quality and authenticity areas using HS-GC-IMS.
Aim of the present study was to develop a quick authentication model for the recognition of the counterfeit ABT PDO products; different mixture (5, 10, 20%) prepared adding AB PGI in ABT PDO were analyzed, confirming the capacity to identify the presence of concentrated/cooked must-like products in ABT PDO in percentage less than 5% using this rapid method. Some key volatile compounds from AB PGI were easily identified using Kovats index. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bordiga Matteo1, Disca Vincenzo1, Rossini Cesare2, Wortelmann Thomas3 and Arlorio Marco1

1Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”
2LabService Analytica s.r.l
3G.A.S. Gesellschaft für analytische Sensorsysteme mbH

Contact the author

Keywords

Vinegar; authentication; GC-IMS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

PROGRESS OF STUDIES OF LEES ORIGINATING FROM THE FIRST ALCOHOLIC FERMENTATION OF CHAMPAGNE WINES

Champagne wines are produced via a two-step process: the first is an initial alcoholic fermentation of grape must that produces a still base wine, followed by a second fermentation in bottle – the prise de mousse – that produces the effervescence. This appellation produces non-vintage sparkling wines composed of still base wines assembled from different vintages, varieties, and regions. These base wines, or “reserve wines,” are typically conserved on their fine lies and used to compensate for quality variance between vintages (1). Continuously blending small amounts of these reserve wines into newer ones also facilitates preserving the producer’s “house style.”

Hyperspectral imaging and cnn for on‐the‐go, non‐destructive assessment of grape composition in the vineyard

Knowledge of the spatial‐temporal variation of the grape composition within a vineyard may assist decision making regarding sampling

Spectral discrimination between Vitis vinifera and labrusca by spectroradiometric techniques

Brazil is one of the few countries where vineyards of Vitis labrusca and Vitis vinifera coexist in the same geographical spaces, due to complex processes of territorial occupation by successive waves of European settlers.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.