IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

Abstract

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc
harvested both in two ripening stages after 9 months of aging. Also, mixtures between them at 50% were studied to assess the impact on the final characteristics of the sparkling wine. Volatile compounds were extracted using headspace solid phase microextraction (HS-SPME) and analysed by gas chromatography coupled to mass spectrometry as described by Ubeda et al. [2]. Foam properties were measured using the Mosalux procedure [3].
Volatile compounds followed the same trend respecting maturity degree in both varieties in some chemical groups. Thus, the general tendency in esters was to increase in the wines produced with grapes with an advanced ripening stage excepting some cases. With respect to terpenes, the tendency was like the esters. However, other compounds such as alcohols, acids and ketones did not follow a common line.
Respecting foaming properties, we could observe that, those treatments made with the Sauvignon blanc variety presented a higher maximum foam height (HM), compared to the Chardonnay treatments. Likewise, those early harvest treatments presented a higher maximum foam height. On the other hand, in both varieties, sparkling wines elaborated with early harvest grapes, presented a longer foam stability time. Blends between maturity stages were useful in balancing these wines.

References

[1] Pons et al. (2017) OENO One, 51(2), 141-146.
[2] Ubeda et al. (2019). Food Research International. 2019, 119, 554-563
[3] Maujean et al. (1990). Bulletin de l’OIV (France). 1990.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lambert-Royo María Ignacia1, Gil I Cortiella Mariona2, Pena-Neira Álvaro1 and Úbeda Cristina2,3

1Facultad de Ciencias Agronómicas. Universidad de Chile
2Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Chile
3Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain.

Contact the author

Keywords

sparkling wines; berry maturity; foaming properties; volatile compounds; SPME.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Promoting sustainability in Mediterranean agriculture: insights from the Portuguese vine & wine sector

Agroecology is an integrated approach that simultaneously applies ecological and social concepts and principles to redesign and manage food and agricultural systems, promoting agroecosystems with the necessary biological, socio-economic, and institutional diversity and alignment to support greater efficiency. Thus, several studies have been carried out at promoting the adoption of more agroecological practices among farmers and a wider audience concerning soil conservation and health maintenance.

Preliminary results of water status and metabolite content of three new crossbreed winegrape genotypes

This study presents the preliminary results obtained in 2022, of the evaluation of three new crossbreed winegrape genotypes and their parental varieties, grown under controlled irrigation (60% ETc) and rainfed conditions in a wine-growing area with scarcity of water and high temperatures (Murcia, southeast Spain). The genotypes MC16 and MC80 were obtained from crosses between the varieties ‘Monastrell’ and ‘Cabernet Sauvignon’, and MS104 from crosses between ‘Monastrell’ and ‘Syrah’ [1]. The objective of this study was to analyse the physiological response and vegetative development of the 6 genotypes under the two irrigation conditions, and to study their effect on the content of soluble sugars and chlorophyll in the leaf.

Ellagitannins and flavano-ellagitannins: concentration ranges in different areas and sensory evaluation

C-Glucosidic ellagitannins, which are the main polyphenolic compounds in oak heartwood, are extracted by wine during aging in oak barrels. Although such maturing of alcoholic beverages in oak barrels is a multi-centennial practice, very little is known on the impact of these ellagitannins on the organoleptic properties of red wine. The objectives of the present investigation were (i) to isolate oak ellagitannins and to hemisynthesize some made-in-wine flavano-ellagitannins, such as acutissimin A; (ii) to analyse their concentration ranges depending on the cultivar area and (iii) to evaluate their sensory impact on the basis of their human threshold concentrations and dose/response relationships in different types of solutions.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content.