IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

Abstract

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc
harvested both in two ripening stages after 9 months of aging. Also, mixtures between them at 50% were studied to assess the impact on the final characteristics of the sparkling wine. Volatile compounds were extracted using headspace solid phase microextraction (HS-SPME) and analysed by gas chromatography coupled to mass spectrometry as described by Ubeda et al. [2]. Foam properties were measured using the Mosalux procedure [3].
Volatile compounds followed the same trend respecting maturity degree in both varieties in some chemical groups. Thus, the general tendency in esters was to increase in the wines produced with grapes with an advanced ripening stage excepting some cases. With respect to terpenes, the tendency was like the esters. However, other compounds such as alcohols, acids and ketones did not follow a common line.
Respecting foaming properties, we could observe that, those treatments made with the Sauvignon blanc variety presented a higher maximum foam height (HM), compared to the Chardonnay treatments. Likewise, those early harvest treatments presented a higher maximum foam height. On the other hand, in both varieties, sparkling wines elaborated with early harvest grapes, presented a longer foam stability time. Blends between maturity stages were useful in balancing these wines.

References

[1] Pons et al. (2017) OENO One, 51(2), 141-146.
[2] Ubeda et al. (2019). Food Research International. 2019, 119, 554-563
[3] Maujean et al. (1990). Bulletin de l’OIV (France). 1990.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lambert-Royo María Ignacia1, Gil I Cortiella Mariona2, Pena-Neira Álvaro1 and Úbeda Cristina2,3

1Facultad de Ciencias Agronómicas. Universidad de Chile
2Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Chile
3Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain.

Contact the author

Keywords

sparkling wines; berry maturity; foaming properties; volatile compounds; SPME.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Fermentation Products, Degradation Parameters, (Poly)Phenols And Potassium Content In Tokaji Aszú Winemaking

The historic Tokaj Wine Region in northeast Hungary, a UNESCO World Heritage region since 2002, encompasses 5,500 ha vineyards. Produced from “noble rot” grapes, Tokaji Aszú is known as one of the oldest botrytized wines all over the world. Special microclimatic conditions (due to Bodrog and Tisza rivers, Indian summer), soil conditions (clay, loess on volcanic bedrock) and grape

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

Exploring the potential of agrivoltaics in German vineyards: A GIS-based assessment

The growing demand for renewable energy and sustainable agricultural practices has highlighted the potential of agrivoltaics (Agri-PV) as a promising solution, particularly in the context of German viticulture.

Towards a European data basis based of advanced multi-isotopic signatures and artificial intelligence: the wine in blue project

Major and trace elements are essential for the development of grapes used for the wine. They are primarily originating from the soil. Some elements are also seldomly added during the wine making process. Therefore, the largest spectrum of major, trace and ultra-trace elements in the final wine product is a good signature of its geographical origin. In the frame of the European tracewindu, we have developed a very original multi-isotopic dilution method using triple quadrupole icp/ms.

Effect of different winemaking techniques and grape variety on chemo-sensory parameters of white wines

AIM: Study the chemical and sensory parameters of fifty commercial white wines elaborated with different techniques (fermented in oak barrel and aged on lees (FB+AL); aged on lees (AL); and without aging (WA)) and different grape varieties (Verdejo, Sauvignon blanc and Godello).