IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

Abstract

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc
harvested both in two ripening stages after 9 months of aging. Also, mixtures between them at 50% were studied to assess the impact on the final characteristics of the sparkling wine. Volatile compounds were extracted using headspace solid phase microextraction (HS-SPME) and analysed by gas chromatography coupled to mass spectrometry as described by Ubeda et al. [2]. Foam properties were measured using the Mosalux procedure [3].
Volatile compounds followed the same trend respecting maturity degree in both varieties in some chemical groups. Thus, the general tendency in esters was to increase in the wines produced with grapes with an advanced ripening stage excepting some cases. With respect to terpenes, the tendency was like the esters. However, other compounds such as alcohols, acids and ketones did not follow a common line.
Respecting foaming properties, we could observe that, those treatments made with the Sauvignon blanc variety presented a higher maximum foam height (HM), compared to the Chardonnay treatments. Likewise, those early harvest treatments presented a higher maximum foam height. On the other hand, in both varieties, sparkling wines elaborated with early harvest grapes, presented a longer foam stability time. Blends between maturity stages were useful in balancing these wines.

References

[1] Pons et al. (2017) OENO One, 51(2), 141-146.
[2] Ubeda et al. (2019). Food Research International. 2019, 119, 554-563
[3] Maujean et al. (1990). Bulletin de l’OIV (France). 1990.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lambert-Royo María Ignacia1, Gil I Cortiella Mariona2, Pena-Neira Álvaro1 and Úbeda Cristina2,3

1Facultad de Ciencias Agronómicas. Universidad de Chile
2Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Chile
3Departamento Nutrición y Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia, Universidad de Sevilla. Sevilla, Spain.

Contact the author

Keywords

sparkling wines; berry maturity; foaming properties; volatile compounds; SPME.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Smartphone as a tool for deficit irrigation management in Vitis vinifera  

Vine water status is one of the most influential factors in grape vigor, yield, and quality (Ojeda et al., 2002; Guilpart et al., 2014). Severe water deficits during the first stage of crop development (bud break to fruit set) impact yield in the current year and the following year. While during grape ripening, water availability impacts berry size, grape composition, and health status. Therefore, a correct assessment of plant water status allows for proper water management with an impact on grape yield and composition (McClymont et al, 2012; Pereyra et al., 2022).

Terracing in steep slope viticulture and its potential to promote biodiversity in vineyard ecosystems

Viticulture on steep slopes has shaped exceptionally species-rich cultural landscapes in Germany.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.