IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

Abstract

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design. Linearity of standard calibration curves created with the optimised method was satisfactory (with correlation coefficients over 0.9917), and repeatability and reproducibility were better than 10% for all targeted analytes. The limits of detection and the limits of quantification were at very low levels (µg L-1), covering the range of expected concentrations for targeted compounds in PN wine. Finally, the developed method was successfully applied to analyse 12 New Zealand PN wines. To our knowledge, this is the first time DLLME has been applied simultaneously to determine all the above aroma compounds present in PN wine. The developed DLLME method is a fast, straight-forward and low-cost method that is more environmentally-friendly than other common volatile extraction methods. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Katugampala Appuhamilage Dinesha Hansamali Perera1, Fedrizzi Bruno1, Pilkington Lisa Ivy1, Jelley Rebecca Eleanor1, Sherman Emma2 and Pinu Farhana R.2

1University of Auckland
2Plant and Food Research, New Zealand

Contact the author

Keywords

Wine, Dispersive liquid–liquid microextraction (DLLME), D-optimal design, Gas chromatography–mass spectrometry, aroma compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.

Evaluation of methods used for the isolation and characterization of grape skin and seed, and wine tannins

Validation of the phloroglucinolysis and RP-HPLC method showed selectivity and repeatability within acceptable limits for all investigated matrices. Recovery of polymeric phenols by SPE was also acceptable.

CONVOLUTIONAL NEURAL NETWORK TO PREDICT GENETIC GROUP AND SULFUR TOLERANCE OF BRETTANOMYCES BRUXELLENSIS

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.