IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

Development of analytical sampling technique to study the aroma profile of Pinot Noir wine

Abstract

A novel and efficient Dispersive Liquid-Liquid Microextraction (DLLME) method coupled with gas chromatography–mass spectrometry (GC–MS) was developed to determine 33 key aroma compounds (esters, alcohols, aldehydes, terpenes, norisoprenoids, fatty acids and phenols) present in Pinot noir (PN) wine. Four critical parameters including extraction solvent type, disperse solvent type, extraction solvent volume and disperse solvent volume were optimised with the aid of D-optimal design. Linearity of standard calibration curves created with the optimised method was satisfactory (with correlation coefficients over 0.9917), and repeatability and reproducibility were better than 10% for all targeted analytes. The limits of detection and the limits of quantification were at very low levels (µg L-1), covering the range of expected concentrations for targeted compounds in PN wine. Finally, the developed method was successfully applied to analyse 12 New Zealand PN wines. To our knowledge, this is the first time DLLME has been applied simultaneously to determine all the above aroma compounds present in PN wine. The developed DLLME method is a fast, straight-forward and low-cost method that is more environmentally-friendly than other common volatile extraction methods. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Katugampala Appuhamilage Dinesha Hansamali Perera1, Fedrizzi Bruno1, Pilkington Lisa Ivy1, Jelley Rebecca Eleanor1, Sherman Emma2 and Pinu Farhana R.2

1University of Auckland
2Plant and Food Research, New Zealand

Contact the author

Keywords

Wine, Dispersive liquid–liquid microextraction (DLLME), D-optimal design, Gas chromatography–mass spectrometry, aroma compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts

The temperature‐based grapevine sugar ripeness (GSR) model for adapting a wide range of Vitis vinifera L. cultivars in a changing climate

 Temperatures are increasing due to climate change leading to advances in grapevine phenology and sugar accumulation in grape berries.

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

Evaluation of the hydroxyethyl radical formation kinetic and Strecker aldehydes distribution for assessing the oxidative susceptibility of Chardonnay wines

Over the last decade, much attention has been paid on the oxidative susceptibility of white wines, given its key role in determining their ageing potential.

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production