GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

The suitability for viticulture at varying altitudes: a study of grapevine ripening in the Italian Alps

Abstract

Context and purpose of the study – Planting vineyards in cooler climates has been used over recent years as a strategy to counter the climatic shifts caused by climate change. A move towards higher altitudes in hilly and mountainous wine regions may provide a solution to deleterious effects that increased ambient temperatures have on wine quality. Until now, the influences of higher altitudes and their climates, as well as their effect on vine growing cycles, still holds a lot of scientific uncertainty. The transnational EU-funded project REBECKA (Interreg V-A IT-AT: ITAT1002, duration: 2017-2019) has the objective to develop a regional valuation method to rate the suitability for viticulture in South Tyrol (Italy) and Carinthia (Austria). Preliminary surveys were performed regarding the effects of altitude on ripening performance of the cultivar Pinot Noir.

Materials and methods – Thirty South Tyrolean vineyard plots, ranging from 220 to 1145 m a.s.l., were used to examine the relationship between altitude and ripening performance of Pinot Noir. Physiological data were collected and maturity tests performed for the 2017 and 2018 vintages. Data collected over a 10-year period (2007-2017) from three ‘typical’ Pinot Noir vineyards (ranging from 355 to 610 m a.s.l.) were used to determine theoretical ‘reference’ ripening days (hereon referred to as ‘day of year,’ or ‘DOY’) for three different sugar ripeness values (16°, 17° and 18° Babo). A DOY for each of the three sugar ripeness values was also identified for each of the 30 vineyards. The DOY’s of the thirty vineyards were then compared to the ‘reference’ DOY’s for each of the three sugar ripeness values to determine if their ripening performances are characteristically ‘typical.’ Collected acidity parameters for all 30 vineyards were also examined relative to each DOY. To determine the influence of temperature on the maturation process at different altitudes, the respective growing degree day (GDD) was calculated for each sample date using the Winkler formula. Correlations were then used to explore the effect of GDD on sugar content and acidity.

Results – Between 300 and 800 m.a.s.l., the current study’s vineyards had the same advancement in ripening (total titratable acidity, malic acid, tartaric acid and pH) as that of a typical South Tyrolean Pinot Noir vineyard between 2007 and 2017. A strong linear relationship (R²=0,811; r=0,9) between the sugar/acid index and the respective GDD was found across all altitudes sampled. At higher altitudes, less GDD lead to a more rapid increase in sugar content and slower decrease in total acidity.

DOI:

Publication date: September 8, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Arno SCHMID1*, Stefania VENTURA1, Lukas EGARTER VIGL2, Simon TSCHOLL2, Erwin GARTNER3, Siegfried QUENDLER3, Franz MOSER4, Hermann KATZ4, Christof SANOLL1 and Barbara RAIFER1

1 Laimburg Research Centre, Laimburg 6, I-39040 Auer, Italy
2 EURAC Research, Drususallee 1, I-39100 Bozen, Italy
3 Obst- u. Weinbauzentrum Kärnten, Schulstraße 9, A-9433 St. Andrä, Austria
4 Joanneum Research, Leonhardstraße 59, A-8010 Graz, Austria

Contact the author

Keywords

climate change, viticulture, ripening performance, Pinot noir, GDD

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

The combined use of Lachancea thermotolerans and lactic bacteria in wine technology

The production of most red wines that are sold involves an alcoholic fermentation carried out by yeasts of the Saccharomyces genus, and a subsequent fermentation carried out by lactic bacteria of the Oenococus oeni species after the first one is fully completed. However, the traditional process can face complications, which can be more likely in grape juices with high levels of sugar and pH. Because of climate change, these situations are more frequent in the wine industry. The main hazards in those scenarios are halts or delays in the alcoholic fermentation or the growth of unwanted bacteria while the alcoholic fermentation is not done yet and the wine still has residual sugars.

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture).

Historical reconquest of hillslopes by the “Vins des Abymes” after the collapse of Mont Granier in 1248 (Savoie, France)

The vineyards extending between the hillslopes of ‘Apremont’ and ‘Les Marches’ that dominate the valley of Chambéry (Savoie, French Alps) define the terroir of the ‘Vins des Abymes’.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.