IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Abstract

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months. The resulting wines were evaluated for chromatic characteristics, anthocyanin-related parameters, total phenols, flavonoids and non-flavonoids phenols, flavanol monomers and oligomeric and polymeric proanthocyanidins [2]. Principal Components Analysis (PCA) and variance analysis (ANOVA) were applied to investigate the relationships between barrels and to assess cooperage and individual barrel effect. Significant differences were observed for phenolic composition and chromatic characteristics in the wines aged in the different barrels, however without significant effect of the cooperage. The barrel-to-barrel variation of chemical parameters depended on each specific parameter and was not uniform. Anthocyanin related parameters showed the highest variation, 25–37%, other phenolics varied 3– 8.5%, and with two exceptions, chromatic characteristics changed 1.7–3% [3]. Cooperages were not shown to differentiate from each other in their internal variation, with relevance for practical application for most of the parameters analyzed in this trial, exception being made for pigments and especially anthocyanin related parameters [3]. The relationship between the number of barrels and the expected variation for each analytical parameter was calculated, as reference for future measurements involving barrel lots, either in wine production or experimental design [3].  

References

[1] Towey J.P., Waterhouse A.L. (1996). Barrel-to-barrel variation of volatile oak extractives in barrel-fermented Chardonnay. Am. J. Enol. Vitic., 47, 17–20.
[2] Sun B., Leandro C., Ricardo Da Silva, J.M., Spranger, I. (1998). Separation of grape and wine proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem., 46, 1390–1396.
[3] Pfahl L., Catarino S., Fontes N., Graça A., Ricardo-da-Silva J. (2021). Effect of barrel-to-barrel variation on color and phenolic composition of a red wine. Foods, 10 (7), 1669. https://doi.org/10.3390/foods10071669

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pfahl Leonard1, Catarino Sofia1,2, Fontes Natacha3, Graça António3 and Ricardo-da-Silva Jorge1

1LEAF – Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa. 
2CeFEMA—Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa
3Sogrape Vinhos S.A.

Contact the author

Keywords

Red wine, oak barrel aging, cooperage, barrel-to-barrel variation, phenolic composition

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Study of the impact of nitrogen additions and isothermal temperature on aroma production in oenological fermentation

Nitrogen and temperature are two important factors that influence wine fermentation and volatile compounds production. Among the different compounds present in the must, nitrogen is an essential nutrient for the management of the fermentation kinetics but it also plays an important role in the synthesis of fermentative aromas. To address the problems related to nitrogen deficiencies, nitrogen additions during alcoholic fermentation have been developed.

Le aree viticole storiche nel mondo: i loro vitigni, la loro protezione e la tipicità dei vini in esse ottenuti

Il tema da trattare si riferisce ai vari ecosistemi viticoli mondiali, ovviamente non facilmente sintetizzabili in una relazione. Sostanzialmente si richiama

Survey of winegrape irrigation practices in the Sacramento-San Joaquin Valley of California

In California vineyards, irrigation is considered as one of the most important decisions growers will make. Recent research has revealed that decisions of when to begin irrigation and how much water to apply have considerable consequences for final grape quality and hence wine quality. However, it is unclear whether and to what extent the average winegrape grower uses objective data to begin irrigating or to determine the amount of water to apply.

The use of rootstock as a lever in the face of climate change and dieback of vineyard

As viticulture faces challenges such as climate change or vineyard dieback, the choice of the variety and rootstock becomes more and more crucial. To study rootstock levers in the Bordeaux region, a parcel of Cabernet Sauvignon (CS) was planted with four rootstocks in 2014. Twenty repetitions of each of the following four rootstocks were set up: 101-14 MGt, Nemadex AB, 420A MGt and Gravesac. The number of bunches, yields and pruning weights of the vine shoots were measured individually on 240 vines from 2017 to 2021. Since 2020, nitrogen status assessed by assimilable nitrogen level, hydric status assessed by δ13C and berry maturity were measured on 80 samples taken from 20 repetitions of the four rootstocks. A lower yield was measured for CS grafted onto Nemadex AB due to the lower number of bunches and the lower weight of berries. The differences between the other three rootstocks are small, but CS grafted onto 420A MGt was the most productive. The CS grafted onto Nemadex AB had the lowest pruning weight while 101-14 MGt had the highest. In 2020, δ13C showed a more moderate water stress with 101-14 MGt and 420A MGt than with Nemadex AB. Surprisingly, the Gravesac was under more stress than the 101-14 MGt. The nitrogen status in the berries was better for Nemadex AB but this was perhaps due to the significantly lower weight of the berries.Rootstock 101-14 MGt attained the highest accumulation of sugars in the berries while 420A MGt allows to preserve higher acidity. The parcel is still young which may explain some of the results. These measures must therefore be continued over the next several years to fully assess the effects of these rootstocks on the development of the vines and the quality of the production under new climatic conditions.

Are my bubbles shrinking? A deeper look at oxygen desorption in wine

In the past decade, there has been an increasing amount of work dedicated to understanding micro-oxygenation in wine.