IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Abstract

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months. The resulting wines were evaluated for chromatic characteristics, anthocyanin-related parameters, total phenols, flavonoids and non-flavonoids phenols, flavanol monomers and oligomeric and polymeric proanthocyanidins [2]. Principal Components Analysis (PCA) and variance analysis (ANOVA) were applied to investigate the relationships between barrels and to assess cooperage and individual barrel effect. Significant differences were observed for phenolic composition and chromatic characteristics in the wines aged in the different barrels, however without significant effect of the cooperage. The barrel-to-barrel variation of chemical parameters depended on each specific parameter and was not uniform. Anthocyanin related parameters showed the highest variation, 25–37%, other phenolics varied 3– 8.5%, and with two exceptions, chromatic characteristics changed 1.7–3% [3]. Cooperages were not shown to differentiate from each other in their internal variation, with relevance for practical application for most of the parameters analyzed in this trial, exception being made for pigments and especially anthocyanin related parameters [3]. The relationship between the number of barrels and the expected variation for each analytical parameter was calculated, as reference for future measurements involving barrel lots, either in wine production or experimental design [3].  

References

[1] Towey J.P., Waterhouse A.L. (1996). Barrel-to-barrel variation of volatile oak extractives in barrel-fermented Chardonnay. Am. J. Enol. Vitic., 47, 17–20.
[2] Sun B., Leandro C., Ricardo Da Silva, J.M., Spranger, I. (1998). Separation of grape and wine proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem., 46, 1390–1396.
[3] Pfahl L., Catarino S., Fontes N., Graça A., Ricardo-da-Silva J. (2021). Effect of barrel-to-barrel variation on color and phenolic composition of a red wine. Foods, 10 (7), 1669. https://doi.org/10.3390/foods10071669

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Pfahl Leonard1, Catarino Sofia1,2, Fontes Natacha3, Graça António3 and Ricardo-da-Silva Jorge1

1LEAF – Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa. 
2CeFEMA—Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, Universidade de Lisboa
3Sogrape Vinhos S.A.

Contact the author

Keywords

Red wine, oak barrel aging, cooperage, barrel-to-barrel variation, phenolic composition

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Vineyards and clay minerals: multi-technique analytical approach and correlations with soil properties

Purpose of this research is to quantitatively assess the mineral component of vineyard soils, with particular attention to the mineralogical analysis of clays, which represent an element of high importance in the vineyard culture as well as in general agriculture. An X-ray diffraction (XRD) / thermogravimetric (TG) multi-technique analytical approach was developed, tested on soil samples taken from vineyards around the world. This codified analytical procedure was necessary to obtain precise qualitative and quantitative mineralogical data, globally comparable to distinguish the geopedological identity of the vineyards. Soil samples from vineyards of various locations were analysed, in very different geological conditions. The bulk-rock quantitative phase analysis (QPA) was obtained by the Rietveld method while the detailed composition of the clay-sized fraction was determined by modelling of the oriented X-ray diffraction patterns. The research provided a precise classification of the mineral component of soils, distinguishing the mineral phases of the clays and the so-called mixed-layer clay minerals. We found that the content in mixed layers can be directly correlated with the water retention and the cation exchange capacity ​​of the soil, while the presence of other clayey minerals and phyllosilicates in this research did not affect this CEC parameter, which codes the fertility level of the soils. The study demonstrates that terroir, in particular soils formed in complex or very different geological conditions, can only be effectively interpreted by properly analysing its mineral phases, in particular the mixed-layer clay component. These are characteristic abiotic ecological indicators, which may have specific eco-physiological influences on the plant.

OPTIMIZING THE IDENTIFICATION OF NEW THIOLS AT TRACE LEVEL IN AGED RED WINES USING NEW OAK WOOD FUNCTIONALISATION STRATEGY

During bottle aging, many thiol compounds are involved in the expression of bouquet of great aged red wines according to the quality of the closure.1,2 Identifying thiol compounds in red wines is a challenging task due several drawbacks including, the complexity of the matrix, the low concentration of these impact compounds and the amount of wine needed.3,4
This work aims to develop a new strategy based on the functionalisation of oak wood organic extracts with H₂S, to produce new thiols, in order to mimic what can happen in red wine during bottle aging. Following this approach and through sensory analysis experiments, we demonstrated that the vanilla-like aroma of fresh oak wood was transformed into intense “meaty” nuances similar to those found in old but non oxidized red wines.

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones.

Historical terraced vineyards – heritage and nature conservation strategies

Historical terrace vineyards are simultaneously impressive documents of the human inclination to design, sites for the production of high quality wines and habitats for a rich variety of flora and fauna

Designing and managing a sustainable vineyard in a climate change scenario

Extension of the growing season, compression of the annual growth cycle and higher frequency and severity of weather extreme events are consistent features of global warming. While mitigation of factors causing global warming is necessary in the medium-long term, wine growers need “ready to go” adaptation practices to counteract negative effects bound to climate change. This must be done in a sustainably way, meaning that remunerative yield, desired grape quality, low production cost and environment friendly solutions must be effectively merged. In this work, we will review contribution given over the last two decades prioritizing issues related to scion and rootstock choice, changes in vineyard floor management, new perception related to the use of irrigation in vineyards, adaptation practices aimed at decompress maturity, solutions to counteract or minimize damages due to late frost and sunburn and, lastly, some hints on how precision viticulture can help with all of this.