terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Abstract

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones. By aligning Illumina and Nanopore whole-genome sequencing reads to a diploid genome assembly of Tempranillo, we identified genome structural variations (SV) specific of this clone: translocation events involving chromosomes 1-3, 7-11, and 8-17. The presence of the SV breakpoints was validated using PCR and Sanger sequencing. The analysis of self-cross progeny of the mutant clone showed that low pollen viability and reduced number of seeds per berry co-segregate with the SV event between specific haplotypes of chromosomes 1 and 3, suggesting a causal effect for this rearrangement. Inspection of Nanopore read alignments identified that the SV 1-3 event corresponds to a complex reciprocal translocation with duplications at the breakpoints of the two involved chromosomes. Considering that heterozygous reciprocal translocations associate with partially incompatible chromosome pairing during meiosis, we propose that this type of SV decreases fruit set rate by lowering gamete viability, ultimately reducing bunch compactness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pablo Carbonell-Bejerano1*, Noelia Alañón1, Yolanda Ferradás1,2, Nuria Mauri1,3, José Miguel Martínez-Zapater1, Javier Ibáñez1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

bunch compactness, clonal variation, genome structural variation, pollen viability, reciprocal translocation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.

Plastic debris at vines: carriers of pollutants in the environment?

Modern agriculture employs large amounts of plastics, such as mulching and greenhouse films, thermal covers, plant protection tubes and tying tape. The latter two types are very common in viticulture. Guard tubes are employed to protect young vines from mechanic and atmospheric damage, whilst polymeric tying tape has replaced natural-origin materials to hold the canopy of vines. Both materials are made on synthetic polymers, which include a range of additives to improve their environmental stability remaining in the environment of vineyards for years. During this time, they are exposed to the range of pesticides (fungicides, insecticides and in a lesser extend herbicides) applied to vines.

High pressure homogenization of fermentation lees: acceleration of yeast autolysis and evolution of white wine during sur-lies ageing

AIM: High pressure technologies represent a promising alternative to thermal treatments for improving quality and safety of liquid foods.

Impact of grapevine leafroll virus infections on vine physiology and the berry transcriptome

Grapevine leafroll associated virus (GLRaV) infections deteriorate vine physiological performance and cause high losses of yield and fruit quality