IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Abstract

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Recent research conducted by our team has been focused on alternative technology towards sustainable ageing of WS resorting to wooden staves combined with micro-oxygenation (MOX).2,3 In the Project CENTRO-04-3928-FEDER-000001, the same wine distillate was aged for 18 months in 1000 L stainless steel tanks with wood staves inside (Limousin oak or chestnut) and MOX (flow rate 2 mL/L/month), and in 250 L barrels made of the same kinds of wood, in duplicate. Despite the promising results achieved, showing faster ageing and the production of high quality aged WSs resulting from the alternative technology compared to those resulting from the traditional one, it is imperative to assess their quality during the storage in bottle to fully validate the new technology. Therefore, the second phase of the investigation is currently made under the Project CENTRO-04-3928-FEDER-000028, studying the chemistry underlying the storage in bottle in order to understand if the features imparted by the ageing technology are retained or if they do not persist. The present work is focused on the behaviour of phenolic compounds of the aged WSs during this stage. For this purpose, the eight aged WSs (from the four modalities: chestnut barrels, Limousin oak barrels, stainless steel tanks with chestnut wood staves and MOX, and stainless steel tanks with Limousin oak wood staves and MOX) were bottled on the same day in 750 mL amber glass bottles (two bottles per modality). The cork stopper and the bottleneck were sealed with parafilm to prevent evaporation. The bottles were stored in the cellar of INIAV-Dois Portos. Sampling was carried out in the beginning and after 12 months of storage, and the phenolic compounds (gallic, syringic, ferulic and ellagic acids, vanillin, syringaldehyde, coniferaldehyde, sinapaldehyde, umbelliferone and scopoletin) were analysed by a HPLC method developed and validated in our laboratory.4

The ANOVA results revealed that most of the compounds’ contents did not change significantly after 12 months of storage in bottle. In addition, the phenolic differences between the WSs resulting from the four ageing modalities remained, except for ferulic acid. Therefore, in these experimental conditions, this stage allowed preserving the phenolic composition imparted to the WS by the alternative ageing technology.

References

1 Canas S., 2017. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A review. Beverages, 3, 55-76.
2 Canas S., Anjos O., Caldeira I., Belchior A.P., 2019. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: alternative technology using micro-oxygenation vs traditional technology. LWT – Food Science and Technology, 111, 260-269.
3 Granja-Soares J., Roque R., Cabrita M.J., Anjos O., Belchior A.P., Caldeira I., Canas S., 2020. Effect of innovative technology using staves and micro-oxygenation on the sensory and odorant profile of aged wine spirit. Food Chem., 333, 127450.
4 Canas S., Belchior A.P., Spranger M.I., Bruno de Sousa R., 2003. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes and furanic derivatives in brandies. Development and validation. J. Sep. Sci., 26, 496–502.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canas Sara1, Lourenço Sílvia1, Anjos Ofélia2 and Caldeira Ilda1

1Instituto Nacional de Investigação Agrária e Veterinária – Pólo de Dois Portos
2 Instituto Politécnico de Castelo Branco 

Contact the author

Keywords

wine spirit, storage in bottle, ageing technology, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

A predictive model of spatial Eca variability in the vineyard to support the monitoring of plant status

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Physical-mechanical berry skin traits as powerful indicators of resistance to botrytis bunch rot

The ongoing climate change results in increasing mean air temperature, which is manifested by weather extremes or sudden changes between drought and local heavy rainfalls. These changing conditions are especially challenging for the established grapevine varieties growing under cool climate conditions due to an increased biotic infection pressure. Thus, the scope of most grapevine breeding programs is the selection of mildew fungus-resistant and climatic adapted grapevines with balanced, healthy yield and outstanding wine quality. Since no resistances or candidate genes have yet been described for Botrytis bunch rot (BBR), physical-mechanical traits like berry size and thick, impermeable berry cuticles phenotyped with high-throughput sensors represent novel effective parameters to predict BBR.