IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Abstract

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Recent research conducted by our team has been focused on alternative technology towards sustainable ageing of WS resorting to wooden staves combined with micro-oxygenation (MOX).2,3 In the Project CENTRO-04-3928-FEDER-000001, the same wine distillate was aged for 18 months in 1000 L stainless steel tanks with wood staves inside (Limousin oak or chestnut) and MOX (flow rate 2 mL/L/month), and in 250 L barrels made of the same kinds of wood, in duplicate. Despite the promising results achieved, showing faster ageing and the production of high quality aged WSs resulting from the alternative technology compared to those resulting from the traditional one, it is imperative to assess their quality during the storage in bottle to fully validate the new technology. Therefore, the second phase of the investigation is currently made under the Project CENTRO-04-3928-FEDER-000028, studying the chemistry underlying the storage in bottle in order to understand if the features imparted by the ageing technology are retained or if they do not persist. The present work is focused on the behaviour of phenolic compounds of the aged WSs during this stage. For this purpose, the eight aged WSs (from the four modalities: chestnut barrels, Limousin oak barrels, stainless steel tanks with chestnut wood staves and MOX, and stainless steel tanks with Limousin oak wood staves and MOX) were bottled on the same day in 750 mL amber glass bottles (two bottles per modality). The cork stopper and the bottleneck were sealed with parafilm to prevent evaporation. The bottles were stored in the cellar of INIAV-Dois Portos. Sampling was carried out in the beginning and after 12 months of storage, and the phenolic compounds (gallic, syringic, ferulic and ellagic acids, vanillin, syringaldehyde, coniferaldehyde, sinapaldehyde, umbelliferone and scopoletin) were analysed by a HPLC method developed and validated in our laboratory.4

The ANOVA results revealed that most of the compounds’ contents did not change significantly after 12 months of storage in bottle. In addition, the phenolic differences between the WSs resulting from the four ageing modalities remained, except for ferulic acid. Therefore, in these experimental conditions, this stage allowed preserving the phenolic composition imparted to the WS by the alternative ageing technology.

References

1 Canas S., 2017. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A review. Beverages, 3, 55-76.
2 Canas S., Anjos O., Caldeira I., Belchior A.P., 2019. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: alternative technology using micro-oxygenation vs traditional technology. LWT – Food Science and Technology, 111, 260-269.
3 Granja-Soares J., Roque R., Cabrita M.J., Anjos O., Belchior A.P., Caldeira I., Canas S., 2020. Effect of innovative technology using staves and micro-oxygenation on the sensory and odorant profile of aged wine spirit. Food Chem., 333, 127450.
4 Canas S., Belchior A.P., Spranger M.I., Bruno de Sousa R., 2003. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes and furanic derivatives in brandies. Development and validation. J. Sep. Sci., 26, 496–502.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canas Sara1, Lourenço Sílvia1, Anjos Ofélia2 and Caldeira Ilda1

1Instituto Nacional de Investigação Agrária e Veterinária – Pólo de Dois Portos
2 Instituto Politécnico de Castelo Branco 

Contact the author

Keywords

wine spirit, storage in bottle, ageing technology, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

New oenological technology for adaptation to climate change: reduction of alcohol content during wine fermentation through stripping, with fermentative CO2

The capture and valorization of fermentative CO2 have been developed for several years by the company w platform for internal uses, notably in the cellars: inerting, cooling, reduction of water consumption, extraction, with aroma valorization. In a context of climatic warming during the vegetative cycle, grapes are currently harvested with a significant sugar concentration, a phenomenon that is expected to intensify in the coming decades. The high alcohol content of the resulting wines goes against the demand of customers who are seeking high-quality wines with less alcohol.

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

METAPIWI: unveiling the role of microbial communities in PIWI grapes for sustainable winemaking

The METAPIWI project advances viticulture research by examining microbial communities in PIWI (fungus-resistant) grapevines compared to traditional Vitis vinifera. It investigates how these microbes influence spontaneous fermentation and the production of distinct metabolites and aromas.

ALCOHOLIC FERMENTATION AND COLOR OF ROSÉ WINES: INVESTIGATIONS ON THE MECHANISMS RESPONSIBLE FOR SUCH DIVERSITY

Color is one of the key elements for the marketing of rosé wines due to their packaging in transparent bottles. Their broad color range is due to the presence of pigments belonging to phenolic compounds extracted from grapes or formed during the wine-making process. However, the mechanisms responsible for such diversity are poorly understood. The few investigations performed on rosé wines showed that their phenolic composition is highly variable, close to that of red wines for the darkest rosés but very different for light ones [1]. Moreover, large variations in the extent of color loss taking place during fermentation have been reported but the mechanisms involved and causes of such variability are unknown.

Carry over effect of shoot trimming and deficit irrigation on fruit yield and berry total soluble solids

The increase in air temperature that is occurring in many important wine-growing areas around the world is resulting in the decoupling between the phenolic and the technological maturity of grapevine berries. This new ripening pattern leads to the production of light-bodied high alcoholic wines, but this is in countertendency with the increasing consumers’ demand for wines with low-to-mid alcohol concentrations. The oenological techniques proposed to reduce wine alcohol content are often very expensive and lead to detrimental effects on wine quality. Many viticultural practices have been proposed to slow down sugar accumulation the berry. One possible strategy that was previously found to be suitable for Aglianico grapevine is post-veraison shoot trimming. The aim of this work was to assess the carry over effects on the following year of shoot trimming and vine water status on yield and total soluble solids because the expected reduction in vine fertility could lead to a reduction in the effectiveness of shoot trimming.