IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Phenolic compounds of wine spirits resulting from different ageing technologies: behaviour during the storage in bottle

Abstract

Phenolic compounds are released from the wood into the wine spirit (WS) during the ageing process, and are of utmost importance to the colour, flavour, taste and the overall quality acquired by this spirit drink.1 Their concentrations in the WS and the related effects mainly depend on the kind of wood (oaks vs chestnut), toasting level and ageing technology (traditional using wooden barrels vs alternative).1,2,3

Recent research conducted by our team has been focused on alternative technology towards sustainable ageing of WS resorting to wooden staves combined with micro-oxygenation (MOX).2,3 In the Project CENTRO-04-3928-FEDER-000001, the same wine distillate was aged for 18 months in 1000 L stainless steel tanks with wood staves inside (Limousin oak or chestnut) and MOX (flow rate 2 mL/L/month), and in 250 L barrels made of the same kinds of wood, in duplicate. Despite the promising results achieved, showing faster ageing and the production of high quality aged WSs resulting from the alternative technology compared to those resulting from the traditional one, it is imperative to assess their quality during the storage in bottle to fully validate the new technology. Therefore, the second phase of the investigation is currently made under the Project CENTRO-04-3928-FEDER-000028, studying the chemistry underlying the storage in bottle in order to understand if the features imparted by the ageing technology are retained or if they do not persist. The present work is focused on the behaviour of phenolic compounds of the aged WSs during this stage. For this purpose, the eight aged WSs (from the four modalities: chestnut barrels, Limousin oak barrels, stainless steel tanks with chestnut wood staves and MOX, and stainless steel tanks with Limousin oak wood staves and MOX) were bottled on the same day in 750 mL amber glass bottles (two bottles per modality). The cork stopper and the bottleneck were sealed with parafilm to prevent evaporation. The bottles were stored in the cellar of INIAV-Dois Portos. Sampling was carried out in the beginning and after 12 months of storage, and the phenolic compounds (gallic, syringic, ferulic and ellagic acids, vanillin, syringaldehyde, coniferaldehyde, sinapaldehyde, umbelliferone and scopoletin) were analysed by a HPLC method developed and validated in our laboratory.4

The ANOVA results revealed that most of the compounds’ contents did not change significantly after 12 months of storage in bottle. In addition, the phenolic differences between the WSs resulting from the four ageing modalities remained, except for ferulic acid. Therefore, in these experimental conditions, this stage allowed preserving the phenolic composition imparted to the WS by the alternative ageing technology.

References

1 Canas S., 2017. Phenolic composition and related properties of aged wine spirits: Influence of barrel characteristics. A review. Beverages, 3, 55-76.
2 Canas S., Anjos O., Caldeira I., Belchior A.P., 2019. Phenolic profile and colour acquired by the wine spirit in the beginning of ageing: alternative technology using micro-oxygenation vs traditional technology. LWT – Food Science and Technology, 111, 260-269.
3 Granja-Soares J., Roque R., Cabrita M.J., Anjos O., Belchior A.P., Caldeira I., Canas S., 2020. Effect of innovative technology using staves and micro-oxygenation on the sensory and odorant profile of aged wine spirit. Food Chem., 333, 127450.
4 Canas S., Belchior A.P., Spranger M.I., Bruno de Sousa R., 2003. High-performance liquid chromatography method for analysis of phenolic acids, phenolic aldehydes and furanic derivatives in brandies. Development and validation. J. Sep. Sci., 26, 496–502.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canas Sara1, Lourenço Sílvia1, Anjos Ofélia2 and Caldeira Ilda1

1Instituto Nacional de Investigação Agrária e Veterinária – Pólo de Dois Portos
2 Instituto Politécnico de Castelo Branco 

Contact the author

Keywords

wine spirit, storage in bottle, ageing technology, phenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Exploring diversified service offerings in the Spanish wine industry

The spanish wine industry stands at a crossroads, transitioning from a traditional emphasis on wine production to a landscape increasingly characterized by diversified service offerings. This paper delves into the nuances of servitization within spanish wineries, investigating the determinants of servitization and the impact of these diversified services on revenue streams. The paper posits hypotheses concerning the influence of various factors, such as winery size, location, market orientation, ownership structure, market competition, regulatory environment, market demand, firm capabilities, owner characteristics, and firm age, on the adoption of diversified service offerings in spanish wineries. The methodology involves comprehensive regression analysis to unravel the drivers of servitization within this context.

Vineyard altitude as a climate change adaptation strategy and its effect on Riesling during grapes and wine composition during ripening

Climate is one of the main drivers of spatial and temporal variability in grapevine physiology and therefore a key determinant of grape composition and final wine value. The world has warmed 1.1 °C since pre-industrial times, and the latest IPCC report indicates an additional 0.5 to 1.3 °C of warming by mid-century with continental locations warming at a greater rate than the oceans.

Under-vine cover crop: effect over glycosidic aroma precursors of Vitis vinifera L. Cv Syrah

AIM: Volatile compounds joint to aromatic precursors form the aroma of grape must that will provide a characteristic aroma to the wine.

Lipids at the crossroads of protection: lipid signalling in grapevine defence mechanisms

Understanding grapevine molecular processes and the underlying defence responses is vital for developing sustainable disease control strategies. Lipid signalling pathways, involving the synthesis and degradation of lipid molecules, have emerged as a key regulator in plant defence against pathogens. This study aims to elucidate the role of fatty acids and lipid signalling in grapevine’s defence response to P. viticola infection. The expression of lipid metabolism-related as well as lipid signalling genes was analysed, by qPCR, in three grapevine genotypes: Chardonnay (susceptible), Regent (tolerant) with Rpv3-1 resistance loci, and Sauvignac (resistant) harbouring a pyramid of Rpv12 and Rpv3-1 resistance loci.

Under-row low competitive herbaceous cover: A sustainable alternative to herbicide in vineyards

Weeds are undesirable plants in agroecosystems as they compete with the crop for essential resources such as light, water and nutrients, compromising the final yield and its quality.