IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Abstract

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009). The use of these products is now well developed in enological practices but a great concern has emerged on their effect on the sensorial characteristics of the wine. Indeed, it is well reported that wine macromolecules such as polysaccharides, mannoproteins, and polyphenols can interact with wine aromas, modifying their volatility and thus their sensorial impact to the overall bouquet of the wine (Comuzzo et al., 2006, 2011; Lubbers, Charpentier, et al., 1994; Lubbers, Voilley, et al., 1994; Pozo-Bayón et al., 2009; Rodríguez-Bencomo et al., 2014).
Our study aimed at getting a better microscale insight into the impact of yeast derivative products (YDP) on volatile compounds in wine. The impact of inactivated dry yeast, autolysate, cell walls, mannoproteins, and protein extract on the partition coefficient of six volatile compounds (isoamyl acetate, hexanol, ethyl hexanoate, linalol, 2 phenyl-ethanol, β-ionone) was studied in a model wine, at different aging times and under oenological conditions.
The originality of this work concerns the development of a Solid Phase Micro Extraction method for partition coefficient measurement that keeps the integrity of the thermodynamic of the sample during the phase of extraction. In the experimental conditions used in this study (YDP at 200 g/hL), the results obtained clearly show a retention effect of YDP on most of the aroma compounds tested. This retention was modulated by the nature of theYDP, the nature of the aroma, and the time of ageing. Further work will aim at getting a better understanding of the nature and the strength of interactions involved in the retention phenomena.

References

Ángeles Pozo-Bayón, M., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Food Research International, 42(7), 754–761.
Charpentier, C., & Feuillat, M. (1992). Wine Microbiology and Biotechnology. G. FLEET Ed., Chur (Suisse), Harwood Academic Publisher., 225–242.
Comuzzo, P., Tat, L., Fenzi, D., Brotto, L., Battistutta, F., & Zironi, R. (2011). Food Chemistry, 127(2), 473–480.
Comuzzo, P., Tat, L., Tonizzo, A., & Battistutta, F. (2006). Food Chemistry, 99(2), 217–230. Lubbers, S., Charpentier, C., Feuillat, M., & Voilley, A. (1994). American Journal of Enology and Viticulture, 45(1), 29–33.
Lubbers, S., Voilley, A., Feuillat, M., & Charpentier, C. (1994). In LWT – Food Science and Technology (Vol. 27, Issue 2, pp. 108–114).
Morata, A., Palomero, F., Loira, I., & Suárez-Lepe, J. A. (2018). In Red Wine Technology.
Palomero, F., Morata, A., Benito, S., Calderón, F., & Suárez-Lepe, J. A. (2009). Food Chemistry, 112(2), 432–441.
Pozo-Bayón, M. Á., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Journal of the Science of Food and Agriculture, 89(10), 1665–1673.
Rodríguez-Bencomo, J. J., Andújar-Ortiz, I., Moreno-Arribas, M. V., Simó, C., González, J., Chana, A., Dávalos, J., & Pozo-Bayón, M. Á. (2014). Journal of Agricultural and Food Chemistry, 62(6), 1373–1383.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rigou Peggy1 and Mekoue Nguela Julie2

1UMR 1083 Sciences for Enology, INRAE-Montpellier SupAgro-University of Montpellier, Montpellier, France.
2Lallemand, SAS 

Contact the author

Keywords

aroma, retention, wine, yeast products

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Drip irrigation and precision cooling reduce impact of extreme heat events during berry ripening

Context and purpose of the study. Heatwaves have become more frequent and intense in several winegrowing regions.

Shading grapevines with dynamic agrivoltaics address the challenge of early ripening and wine quality related with climate change

Context and purpose of the study. Climate change accelerates grapevine’s phenology, advancing harvests by 2–3 weeks over the past 40 years negatively affecting wine style due to a lack of acidity and too much alcohol.

Evaluation of the adaptation of Palomino Fino clones based on their physiological response

Genetic diversity within grapevine cultivars is a fundamental resource for varietal improvement and adaptation to cultivation requirements.

Sensory analysis in oenology: the role of methodological differences in expert panel evaluations

Sensory analysis is an essential component of oenology, offering valuable insights into wine quality that influence decision-making in viticulture and winemaking.

Future scenarios for viticultural climatic zoning in Europe

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region