IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Abstract

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009). The use of these products is now well developed in enological practices but a great concern has emerged on their effect on the sensorial characteristics of the wine. Indeed, it is well reported that wine macromolecules such as polysaccharides, mannoproteins, and polyphenols can interact with wine aromas, modifying their volatility and thus their sensorial impact to the overall bouquet of the wine (Comuzzo et al., 2006, 2011; Lubbers, Charpentier, et al., 1994; Lubbers, Voilley, et al., 1994; Pozo-Bayón et al., 2009; Rodríguez-Bencomo et al., 2014).
Our study aimed at getting a better microscale insight into the impact of yeast derivative products (YDP) on volatile compounds in wine. The impact of inactivated dry yeast, autolysate, cell walls, mannoproteins, and protein extract on the partition coefficient of six volatile compounds (isoamyl acetate, hexanol, ethyl hexanoate, linalol, 2 phenyl-ethanol, β-ionone) was studied in a model wine, at different aging times and under oenological conditions.
The originality of this work concerns the development of a Solid Phase Micro Extraction method for partition coefficient measurement that keeps the integrity of the thermodynamic of the sample during the phase of extraction. In the experimental conditions used in this study (YDP at 200 g/hL), the results obtained clearly show a retention effect of YDP on most of the aroma compounds tested. This retention was modulated by the nature of theYDP, the nature of the aroma, and the time of ageing. Further work will aim at getting a better understanding of the nature and the strength of interactions involved in the retention phenomena.

References

Ángeles Pozo-Bayón, M., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Food Research International, 42(7), 754–761.
Charpentier, C., & Feuillat, M. (1992). Wine Microbiology and Biotechnology. G. FLEET Ed., Chur (Suisse), Harwood Academic Publisher., 225–242.
Comuzzo, P., Tat, L., Fenzi, D., Brotto, L., Battistutta, F., & Zironi, R. (2011). Food Chemistry, 127(2), 473–480.
Comuzzo, P., Tat, L., Tonizzo, A., & Battistutta, F. (2006). Food Chemistry, 99(2), 217–230. Lubbers, S., Charpentier, C., Feuillat, M., & Voilley, A. (1994). American Journal of Enology and Viticulture, 45(1), 29–33.
Lubbers, S., Voilley, A., Feuillat, M., & Charpentier, C. (1994). In LWT – Food Science and Technology (Vol. 27, Issue 2, pp. 108–114).
Morata, A., Palomero, F., Loira, I., & Suárez-Lepe, J. A. (2018). In Red Wine Technology.
Palomero, F., Morata, A., Benito, S., Calderón, F., & Suárez-Lepe, J. A. (2009). Food Chemistry, 112(2), 432–441.
Pozo-Bayón, M. Á., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Journal of the Science of Food and Agriculture, 89(10), 1665–1673.
Rodríguez-Bencomo, J. J., Andújar-Ortiz, I., Moreno-Arribas, M. V., Simó, C., González, J., Chana, A., Dávalos, J., & Pozo-Bayón, M. Á. (2014). Journal of Agricultural and Food Chemistry, 62(6), 1373–1383.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rigou Peggy1 and Mekoue Nguela Julie2

1UMR 1083 Sciences for Enology, INRAE-Montpellier SupAgro-University of Montpellier, Montpellier, France.
2Lallemand, SAS 

Contact the author

Keywords

aroma, retention, wine, yeast products

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Grape overripening as an innovation strategy in response to climate change

Today’s viticulture is facing a new climatic scenario with temperature increases and rainfall deficits, generated by the effect of climate change. As a result of these new conditions, there are earlier harvests, increased plant water stress and higher disease risk in wetter wine-growing regions.

Effects of heat and water stress on grapevine health: primary and secondary metabolism

Grapevine resilience to climate change has become one of the most pressing topics in the Viticulture & Enology field. Vineyard health demands understanding the mechanisms that explain the direct and indirect interactions between environmental stressors. The current climate change scenario, where drought and heat-wave are more frequent and intense, strongly demands improving our knowledge of environmental stresses. During a heatwave, the ambient temperature rises above the plant’s average tolerance threshold and, generally, above 35 oC plant’s adaptation to heat stress is activated.

“Compost Application in the Vineyard: Effects on Soil Nutrition and Compaction”

The mechanization of pruning and harvesting in vineyards has increased the risk of soil compaction. To reclaim soil properties or avoid this degradation process, it is crucial to properly manage the soil organic matter, and the application of compost derived from the vines themselves is a strategy to achieve this. The objective of this study was to evaluate the properties of soil treated with different doses of compost applied both on the vine row and the inter rows of a Vitis vinifera crop.

Valorisation of nutraceutical and health-related properties of wine-grapes of Emilia-Romagna Italian region

In this work, results about the composition in polyphenols and polyamines in important wine-grape cultivars from the Emilia-Romagna region are presented. Spectrophotometric and HPLC analyses suggest that especially coloured berries are particularly rich of antioxidant species (stilbenes and catechins). Potential allergenic capability of biogenic amines was also characterized.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.