IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Abstract

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009). The use of these products is now well developed in enological practices but a great concern has emerged on their effect on the sensorial characteristics of the wine. Indeed, it is well reported that wine macromolecules such as polysaccharides, mannoproteins, and polyphenols can interact with wine aromas, modifying their volatility and thus their sensorial impact to the overall bouquet of the wine (Comuzzo et al., 2006, 2011; Lubbers, Charpentier, et al., 1994; Lubbers, Voilley, et al., 1994; Pozo-Bayón et al., 2009; Rodríguez-Bencomo et al., 2014).
Our study aimed at getting a better microscale insight into the impact of yeast derivative products (YDP) on volatile compounds in wine. The impact of inactivated dry yeast, autolysate, cell walls, mannoproteins, and protein extract on the partition coefficient of six volatile compounds (isoamyl acetate, hexanol, ethyl hexanoate, linalol, 2 phenyl-ethanol, β-ionone) was studied in a model wine, at different aging times and under oenological conditions.
The originality of this work concerns the development of a Solid Phase Micro Extraction method for partition coefficient measurement that keeps the integrity of the thermodynamic of the sample during the phase of extraction. In the experimental conditions used in this study (YDP at 200 g/hL), the results obtained clearly show a retention effect of YDP on most of the aroma compounds tested. This retention was modulated by the nature of theYDP, the nature of the aroma, and the time of ageing. Further work will aim at getting a better understanding of the nature and the strength of interactions involved in the retention phenomena.

References

Ángeles Pozo-Bayón, M., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Food Research International, 42(7), 754–761.
Charpentier, C., & Feuillat, M. (1992). Wine Microbiology and Biotechnology. G. FLEET Ed., Chur (Suisse), Harwood Academic Publisher., 225–242.
Comuzzo, P., Tat, L., Fenzi, D., Brotto, L., Battistutta, F., & Zironi, R. (2011). Food Chemistry, 127(2), 473–480.
Comuzzo, P., Tat, L., Tonizzo, A., & Battistutta, F. (2006). Food Chemistry, 99(2), 217–230. Lubbers, S., Charpentier, C., Feuillat, M., & Voilley, A. (1994). American Journal of Enology and Viticulture, 45(1), 29–33.
Lubbers, S., Voilley, A., Feuillat, M., & Charpentier, C. (1994). In LWT – Food Science and Technology (Vol. 27, Issue 2, pp. 108–114).
Morata, A., Palomero, F., Loira, I., & Suárez-Lepe, J. A. (2018). In Red Wine Technology.
Palomero, F., Morata, A., Benito, S., Calderón, F., & Suárez-Lepe, J. A. (2009). Food Chemistry, 112(2), 432–441.
Pozo-Bayón, M. Á., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Journal of the Science of Food and Agriculture, 89(10), 1665–1673.
Rodríguez-Bencomo, J. J., Andújar-Ortiz, I., Moreno-Arribas, M. V., Simó, C., González, J., Chana, A., Dávalos, J., & Pozo-Bayón, M. Á. (2014). Journal of Agricultural and Food Chemistry, 62(6), 1373–1383.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rigou Peggy1 and Mekoue Nguela Julie2

1UMR 1083 Sciences for Enology, INRAE-Montpellier SupAgro-University of Montpellier, Montpellier, France.
2Lallemand, SAS 

Contact the author

Keywords

aroma, retention, wine, yeast products

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Physiological and performance responses of grapevine rootstocks to water deficit and recovery 

Rootstocks play a key role in the grapevine’s adaptation to the increasing soil water scarcity related to climate change. A pot experiment carried out in 2022 aimed at assessing the physiological responses of seven ungrafted rootstocks to a progressive soil water deficit and a subsequent recovery to field capacity.

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).

Interaction among grapevine cultivars (Sangiovese, Cabernet-Sauvignon and Merlot) and site of cultivation in Bolgheri (Tuscany)

Different “landscape unit” have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in the 1992-1993 period. In all cultivar (Sangiovese, Cabernet Sauvignon and Merlot) x landscape unit combinations, experimental plots were chosen in homogeneous vineyards, single cordon trained (about 3300-4500 vines/hectare). Grape maturation was studied by weekly samples of berries from veraison to vintage in the 1992-1995 period. At harvest yield and must composition traits were measured and, from the most représentative plots, sixty kilograms of grapes were harvested each year and vinified according to a standardised scheme. Wines were evaluated by standard chemical and sensory analyses.

Inhibition of reductive characters in wine by cu-organic acids: predicting the duration of protection

Cu organic acid complexes efficiently bind hydrogen sulfide in wine and therefore prevent its accumulation and subsequent reductive off-flavour [1]. This fraction of Cu can also bind methanethiol