IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Effect of Yeast Derivative Products on Aroma compounds retention in model wine

Abstract

For many years, enological research has developed commercial formulates of yeast derivatives as stabilizing agents and technological adjuvants in winemaking. These products are obtained from yeast by autolytic, plasmolytic, or hydrolytic processes that liberate many macromolecules from the yeast cell, principally polysaccharides and oligosaccharides and most specifically mannoproteins that are well known for their ability to improve tartaric stability and to reduce the occurrence of protein hazes (Ángeles Pozo-Bayón et al., 2009; Charpentier & Feuillat, 1992; Morata et al., 2018; Palomero et al., 2009). The use of these products is now well developed in enological practices but a great concern has emerged on their effect on the sensorial characteristics of the wine. Indeed, it is well reported that wine macromolecules such as polysaccharides, mannoproteins, and polyphenols can interact with wine aromas, modifying their volatility and thus their sensorial impact to the overall bouquet of the wine (Comuzzo et al., 2006, 2011; Lubbers, Charpentier, et al., 1994; Lubbers, Voilley, et al., 1994; Pozo-Bayón et al., 2009; Rodríguez-Bencomo et al., 2014).
Our study aimed at getting a better microscale insight into the impact of yeast derivative products (YDP) on volatile compounds in wine. The impact of inactivated dry yeast, autolysate, cell walls, mannoproteins, and protein extract on the partition coefficient of six volatile compounds (isoamyl acetate, hexanol, ethyl hexanoate, linalol, 2 phenyl-ethanol, β-ionone) was studied in a model wine, at different aging times and under oenological conditions.
The originality of this work concerns the development of a Solid Phase Micro Extraction method for partition coefficient measurement that keeps the integrity of the thermodynamic of the sample during the phase of extraction. In the experimental conditions used in this study (YDP at 200 g/hL), the results obtained clearly show a retention effect of YDP on most of the aroma compounds tested. This retention was modulated by the nature of theYDP, the nature of the aroma, and the time of ageing. Further work will aim at getting a better understanding of the nature and the strength of interactions involved in the retention phenomena.

References

Ángeles Pozo-Bayón, M., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Food Research International, 42(7), 754–761.
Charpentier, C., & Feuillat, M. (1992). Wine Microbiology and Biotechnology. G. FLEET Ed., Chur (Suisse), Harwood Academic Publisher., 225–242.
Comuzzo, P., Tat, L., Fenzi, D., Brotto, L., Battistutta, F., & Zironi, R. (2011). Food Chemistry, 127(2), 473–480.
Comuzzo, P., Tat, L., Tonizzo, A., & Battistutta, F. (2006). Food Chemistry, 99(2), 217–230. Lubbers, S., Charpentier, C., Feuillat, M., & Voilley, A. (1994). American Journal of Enology and Viticulture, 45(1), 29–33.
Lubbers, S., Voilley, A., Feuillat, M., & Charpentier, C. (1994). In LWT – Food Science and Technology (Vol. 27, Issue 2, pp. 108–114).
Morata, A., Palomero, F., Loira, I., & Suárez-Lepe, J. A. (2018). In Red Wine Technology.
Palomero, F., Morata, A., Benito, S., Calderón, F., & Suárez-Lepe, J. A. (2009). Food Chemistry, 112(2), 432–441.
Pozo-Bayón, M. Á., Andújar-Ortiz, I., & Moreno-Arribas, M. V. (2009). Journal of the Science of Food and Agriculture, 89(10), 1665–1673.
Rodríguez-Bencomo, J. J., Andújar-Ortiz, I., Moreno-Arribas, M. V., Simó, C., González, J., Chana, A., Dávalos, J., & Pozo-Bayón, M. Á. (2014). Journal of Agricultural and Food Chemistry, 62(6), 1373–1383.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Rigou Peggy1 and Mekoue Nguela Julie2

1UMR 1083 Sciences for Enology, INRAE-Montpellier SupAgro-University of Montpellier, Montpellier, France.
2Lallemand, SAS 

Contact the author

Keywords

aroma, retention, wine, yeast products

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Haplotype-resolved genome assemblies of Chasselas and Ugni Blanc

Haplotype-resolved genome assemblies were produced for Chasselas and Ugni Blanc, two heterozygous real-field genetic pool Vitis vinifera cultivars by combining high-fidelity long-read sequencing (HiFi) and high‐throughput chromosome conformation capture (Hi-C). The telomere-to-telomere full coverage of the chromosomes allowed us to assemble separately the two haplo-genomes of both cultivars and revealed structural variations between the two haplotypes of a given cultivar.

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral.

Treated wastewater irrigation: how to manage water salinity without reducing its nutrients content?

Nutrients in municipal treated wastewater (N, P, K, mainly) are a particular advantage in this source over conventional irrigation water sources

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).