IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Abstract

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE). The analysis of flavan-3-ols was carried out by high performance liquid chromatography (HPLC). Identification was performed by comparing retention times and spectra with those of pure standards. Procyanidins B1, B2, B3, C1, and (+)-catechin and (-)-epicatechin were identified in all wine samples. Statistical data analysis was performed using one-way analysis of variance (ANOVA) and Fischer’s least significant difference (LSD), while Pearson’s correlation was used to observe the relationship between total phenolic content and total flavan-3-ols. According to the obtained results, total phenolic content increased in all maceration treatments when compared to C treatment wine. The increase in total phenolic content was the highest in post-fermentative maceration treatments, M14 and M42. Total flavan-3-ol content showed a similar trend, also reaching the highest values in M14 and M42 treatment wines, while the lowest concentrations were observed in both C and CRYO treatments. A high positive correlation was observed between total phenolic content and total flavan-3-ols. When observing individual flavan-3-ol compounds, (-)-epicatechin reached the highest concentrations, especially in M42 treatment. Procyanidin B3 and C1 significantly increased only when 42 days maceration was applied, while shorter maceration durations or temperature did not affect the increase in these compounds. It can be concluded that the investigated phenolics highly depended on the maceration conditions applied. Additionally, the increase levels of bioactive phenols resulting from the application of the investigated maceration practices might attract those consumers interested in moderate white wine consumption for specific health reasons. The study was funded by the Croatian Scientific Foundation under the projects IP 2018-5049 and DOK-2020-01-1901.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bestulić Ena1, Rossi Sara1, Plavša Tomislav1, Horvat Ivana1, Lukić Igor1, Jeromel Ana2 and Radeka Sanja1

1Institute of Agriculture and Tourism
2University of Zagreb Faculty of Agriculture 

Contact the author

Keywords

Malvazija istarska white wine, maceration conditions, bioactive compounds, total phenols, flavan-3-ols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effets de l’application d’acide gibbérellique (GA3) sur la qualité de raisins et de vins produits en climat tropical au Nord-Est du Brésil

The honeydew moth Cryptoblabes gnidiella is the main problem for the wineries in the Northeast of the Brazil, because it attacks the bunch and reduces the quality of the grapes and the wines. In order to stretch out the bunch to facilitate the penetration of the insecticides, it was used gibberellic acid. Six treatments with different concentrations and different dates of application, and the control were compared.

Balearic varieties of grapevine: study of genetic variability in the response to water stress

The photosynthetic characteristics of twenty varieties of grapevine (Vitis vinifera L.) from Mallorca (Balearic Islands, Spain) and two widespread varieties

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape

Grapevine is one of the most extensively cultivated fruit crops, playing a crucial role in the economies of many grape-growing regions around the world.