IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Influence of maceration time and temperature on some bioactive compounds in Malvazija istarska white wines

Abstract

The rising trend of moderate wine consumption as a part of a healthy lifestyle promotes white wines with higher phenolic content because of their bioactive properties. Duration and temperature of the maceration process have a marked impact on the content and composition of wine phenolics. The aim of this study was to explore the effect of applying maceration processes of different durations and temperature on total phenolic content and flavan-3-ol compounds concentration of Malvazija istarska (Vitis vinifera L.) wines, an autochthonous Croatian white grape variety. Vinification took place at the Institute of Agriculture and Tourism (Poreč) where pre-fermentative two days cryomaceration treatment at 8 °C (CRYO), seven days maceration treatment at 16 °C (M7), and prolonged post-fermentative maceration treatments at 16 °C for 14 days (M14), 21 day (M21), and 42 days (M42) were studied and compared to non-maceration control treatment (C). Total phenolic content was determined by the Folin-Ciocalteu colorimetric method using a UV/VIS spectrophotometer and the results were expressed as gallic acid equivalents (mg/L GAE). The analysis of flavan-3-ols was carried out by high performance liquid chromatography (HPLC). Identification was performed by comparing retention times and spectra with those of pure standards. Procyanidins B1, B2, B3, C1, and (+)-catechin and (-)-epicatechin were identified in all wine samples. Statistical data analysis was performed using one-way analysis of variance (ANOVA) and Fischer’s least significant difference (LSD), while Pearson’s correlation was used to observe the relationship between total phenolic content and total flavan-3-ols. According to the obtained results, total phenolic content increased in all maceration treatments when compared to C treatment wine. The increase in total phenolic content was the highest in post-fermentative maceration treatments, M14 and M42. Total flavan-3-ol content showed a similar trend, also reaching the highest values in M14 and M42 treatment wines, while the lowest concentrations were observed in both C and CRYO treatments. A high positive correlation was observed between total phenolic content and total flavan-3-ols. When observing individual flavan-3-ol compounds, (-)-epicatechin reached the highest concentrations, especially in M42 treatment. Procyanidin B3 and C1 significantly increased only when 42 days maceration was applied, while shorter maceration durations or temperature did not affect the increase in these compounds. It can be concluded that the investigated phenolics highly depended on the maceration conditions applied. Additionally, the increase levels of bioactive phenols resulting from the application of the investigated maceration practices might attract those consumers interested in moderate white wine consumption for specific health reasons. The study was funded by the Croatian Scientific Foundation under the projects IP 2018-5049 and DOK-2020-01-1901.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Bestulić Ena1, Rossi Sara1, Plavša Tomislav1, Horvat Ivana1, Lukić Igor1, Jeromel Ana2 and Radeka Sanja1

1Institute of Agriculture and Tourism
2University of Zagreb Faculty of Agriculture 

Contact the author

Keywords

Malvazija istarska white wine, maceration conditions, bioactive compounds, total phenols, flavan-3-ols

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Spatial variability of grape berry maturation program at the molecular level 

The application of sensors in viticulture is a fast and efficient method to monitor grapevine vegetative, yield and quality parameters and determine their spatial intra-vineyard variability. Molecular analysis at the gene expression level can further contribute to the understanding of the observed variability by elucidating how pathways responsible for different grape quality traits behave in zones diverging for one or the other parameter. The intra-vineyard variability of a Cabernet Sauvignon vineyard was evaluated by a standard Normalized Difference Vegetation Index (NDVI) mapping approach, employing UAV platform, accompanied by detailed ground-truthing (e.g. vegetative, yield, and berry ripening compositional parameters) that was applied in 14 spots in the vineyard. Berries from different spots were additionally investigated by microarray gene expression analysis, performed at five time points from fruit set to full ripening.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

Ripening behaviour and grape must quality of eleven white resistant varieties in Trentino

In a situation of uncertainty towards the overall effect of climate change and the reduction of pestice utilization on quality, the wine sector needs to maintain the profitability of producers, which inexorably depends on ensuring the quality of grapes and wines. Among the various alternatives that can be adopted, hybrid varieties carrying resistance genes are currently gaining the attention of researchers and producers. Some of them are already a reality and are included in the national catalogue of some countries, selected by research institutes all over Europe.

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine.

Selected ion flow tube mass spectrometry: a promising technology for the high throughput phenotyping of grape berry volatilome

Wine grapes breeding has been concentrating a lot of efforts within the grape research community over the last decade. The quick phenotyping of genotype quality traits including aroma composition remains challenging. Selected Ion Flow Tube Mass Spectrometry (SIFT-MS), a technology first available in 2008 and developing rapidly, could be particularly valuable for this usage. The aims of this study were i) to use SIFT-MS, to analyze the whole volatilome from different grape varieties, ii) to assess the ability of this technology to discriminate varieties according to their grape aroma composition, and iii) to study the stability of SIFT-MS signal over maturation to define a sampling strategy.