IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Abstract

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine. Although some results are consistent with each other, there are many contrasting and contradicting outcomes, which most likely derived from the differences in grape juice composition, as well as due to various combinations and interactions of non-Saccharomyces and S. cerevisiae strains used in different studies. For these reasons, the actual contribution of non-Saccharomyces yeasts was often not completely distinguishable. The main premise of this study was that by investigating the production of volatile aroma compounds produced by non-Saccharomyces yeasts in the early phase of fermentation, prior to interaction with S. cerevisiae, a valuable insight from another perspective can be achieved about the particular effects they induce. Malvazija istarska (Vitis vinifera L.) white grape must was inoculated with the following non-Saccharomyces yeasts: Torulaspora delbrueckii, Metschnikowia
pulcherrima, Pichia kluyveri, Lachancea thermotolerans and Schizosaccharomyces pombe, while Saccharomyces cerevisiae was used as a control. The fermenting grape musts were subjected to headspace solid-phase microextraction and gas-chromatography-mass spectrometric analysis at the point just before S. cerevisiae inoculation, when alcohol level reached 1.5 – 2.5 vol. %. Each of the investigated non-Saccharomyces yeasts produced a
unique and distinctive aroma profile. The highest concentrations of linalool and β-damascenone were found in the must fermented by Pichia kluyveri and the lowest in the control S. cerevisiae must. The concentration of 2-phenylethanol produced by S. cerevisiae almost doubled those found in the musts of non-Saccharomyces starters. Ethyl propanoate differentiated well the investigated yeasts, with the highest concentration found in T.
delbrueckii must. This must also contained the highest concentrations of some other propanoates, including 2-phenethyl propanoate which turned out to be specific for this species. Particular non-Saccharomyces yeasts boosted the early synthesis of many important esters, such as ethyl hexanoate, ethyl octanoate and 2-phenethyl acetate, the main contributors to fruity and flowery notes of wine aroma. The obtained results showed that the potential of the investigated non-Saccharomyces yeasts to produce diverse wines is rather high. This study was funded by Croatian Science Foundation under the projects IP-2020-02-4551 and DOK-2021-02-5500.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delač Salopek Doris1, Horvat Ivana1, Hranilovic Ana2, Plavsa Tomislav1, Radeka Sanja1, Paskovic Igor1 and Lukic Igor1 

1Institute for Agriculture and Tourism
2Department of Wine Science, The University of Adelaide 

Contact the author

Keywords

non-Saccharomyces yeasts, sequential inoculation, SPME-GC-MS, volatile aroma compounds, esters

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Applicability of grape native yeasts to enhance regional wine typicity

The universalization in wine production has been restricting the imprint of terroir in regional wines, resulting in loss of typicity. Microbes are the main driving force in wine production, conducting fermentation and originating a myriad of metabolites that underly wine aroma. Grape berries harbor an ecological niche composed of filamentous fungi, yeasts and bacteria, which are influenced by the ripening stage, cultivar and region. The research project GrapeMicrobiota gathers a consortium from University of Zaragoza, University of Minho and University of Tours and aims at the isolation of native yeast strains from berries of the wine region Douro, UNESCO World Heritage, towards the production of wines that stand out in the market for their authenticity and for reflecting their region of origin in their aroma.

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Assessing the potential of fermentative skin contact in white winemaking on phenolic, colour, and sensory traits

Fermentative maceration in white wine production, involving extended contact with grape skins and seeds, has gained interest in recent years. The impact of this winemaking technique on wine composition and sensory properties remains underexplored.

Red Grenache variety in Rhône Valley : impact of “terroir” and vintages on the aromatic potential of the grapes

The Grenache Noir grape variety, due to its originality and its representativeness, contributes very directly to the quality and typicality of the wines of the Rhône Valley. It is generally appreciated for its varied aromatic palette and for the roundness and suppleness it gives to wines. Since 1995, the Rhodanien Institute has set up a network of reference plots representative of the different types of terroir present in the southern zone of the Côtes du Rhône Appellation (TRUC, 1997; VAUDOUR et al, 1996 ) . Publications on the aromatic composition of grapes and wines are very abundant, but only a few articles have appeared on the Grenache grape variety PAUMES et al., 1986).

An excessive leaf-fruit ratio reduces the yeast assimilable nitrogen in the must

Yeast assimilable nitrogen (YAN) in the grape must is a key variable for wine quality as a source of aroma precursors. In a situation of YAN deficiency, a foliar urea application upon the vine at veraison enhances YAN concentration and facilitates must fermentation. In 2013, Agroscope investigated the impact of leaf-fruit ratio on the nitrogen (N) assimilation and partitioning in grapevine Vitis vinifera cv. Chasselas following foliar-urea application with the aim of improving its efficiency on the YAN concentration.