IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Early fermentation aroma profiles of grape must produced by various non-Saccharomyces starters

Abstract

Saccharomyces cerevisiae is the most commonly used yeast species in winemaking. The recent research showed that non-Saccharomyces yeasts as fermentation starters show numerous beneficial features and can be utilized to reduce wine alcoholic strength, regulate acidity, serve as bioprotectants, and finally improve wine aromatic complexity. The majority of published studies on this topic investigated the influence of sequential or co-inoculations of non-Saccharomyces and S. cerevisiae yeasts on the aroma of final wine. Although some results are consistent with each other, there are many contrasting and contradicting outcomes, which most likely derived from the differences in grape juice composition, as well as due to various combinations and interactions of non-Saccharomyces and S. cerevisiae strains used in different studies. For these reasons, the actual contribution of non-Saccharomyces yeasts was often not completely distinguishable. The main premise of this study was that by investigating the production of volatile aroma compounds produced by non-Saccharomyces yeasts in the early phase of fermentation, prior to interaction with S. cerevisiae, a valuable insight from another perspective can be achieved about the particular effects they induce. Malvazija istarska (Vitis vinifera L.) white grape must was inoculated with the following non-Saccharomyces yeasts: Torulaspora delbrueckii, Metschnikowia
pulcherrima, Pichia kluyveri, Lachancea thermotolerans and Schizosaccharomyces pombe, while Saccharomyces cerevisiae was used as a control. The fermenting grape musts were subjected to headspace solid-phase microextraction and gas-chromatography-mass spectrometric analysis at the point just before S. cerevisiae inoculation, when alcohol level reached 1.5 – 2.5 vol. %. Each of the investigated non-Saccharomyces yeasts produced a
unique and distinctive aroma profile. The highest concentrations of linalool and β-damascenone were found in the must fermented by Pichia kluyveri and the lowest in the control S. cerevisiae must. The concentration of 2-phenylethanol produced by S. cerevisiae almost doubled those found in the musts of non-Saccharomyces starters. Ethyl propanoate differentiated well the investigated yeasts, with the highest concentration found in T.
delbrueckii must. This must also contained the highest concentrations of some other propanoates, including 2-phenethyl propanoate which turned out to be specific for this species. Particular non-Saccharomyces yeasts boosted the early synthesis of many important esters, such as ethyl hexanoate, ethyl octanoate and 2-phenethyl acetate, the main contributors to fruity and flowery notes of wine aroma. The obtained results showed that the potential of the investigated non-Saccharomyces yeasts to produce diverse wines is rather high. This study was funded by Croatian Science Foundation under the projects IP-2020-02-4551 and DOK-2021-02-5500.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Delač Salopek Doris1, Horvat Ivana1, Hranilovic Ana2, Plavsa Tomislav1, Radeka Sanja1, Paskovic Igor1 and Lukic Igor1 

1Institute for Agriculture and Tourism
2Department of Wine Science, The University of Adelaide 

Contact the author

Keywords

non-Saccharomyces yeasts, sequential inoculation, SPME-GC-MS, volatile aroma compounds, esters

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

AN AUTOMATIC CANOPY COOLING SYSTEM TO COPE WITH THE THERMAL-RADIATIVE STRESSES IN THE PIGNOLETTO WHITE GRAPE

In recent years characterized by hot dry summers, the implementation of innovative irrigation tools in the vineyard represents a crucial challenge to ensure optimal production and to avoid excess of water consumption. It is known that the grapevine reacts to multiple stresses – i.e., high temperatures and wa- ter shortage – through adaptive mechanisms that are detrimental to the yield. Furthermore, this condi- tion is usually aggravated by high solar radiation, which could negatively affect the phenolic composi- tion of the grapes. Therefore, a cooling system has been developed aiming to reduce bunches’ sunburn damage.

INTEGRAPE guidelines and tools: an effort of COST Action CA17111

INTEGRAPE was a European interdisciplinary network for “data integration to maximize the power of omics for grapevine improvement” (CA17111, https://integrape.eu/), funded by the European COST Association from September 2018 to 2022. This Action successfully developed guidelines and tools for data management and promoted the best practices in grapevine omics studies with a holistic future vision of: “Imagine having all data on grapevine accessible in a single place”.

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

Reduced berry skin epi-cuticular wax and cutin accumulation associates with a genomic deletion and increased polyphenols extractability in a clone of Tempranillo Tinto 

Tempranillo Tinto (TT) is the third-most planted red wine variety in the world, and it is mostly grown in the Iberian Peninsula. Spontaneous somatic variation appearing during vegetative propagation can be exploited to improve elite varieties as Tempranillo Tinto, including the selection of new phenotypes enhancing berry quality. We described previously that a somatic variant of TT with darker fruit color, the clone VN21, exhibits increased extractability of polyphenols during the winemaking process. To unravel the molecular mechanism underlying this phenomenon, we performed whole-genome resequencing to compare VN21 to other TT clones, revealing a 10 Mb deletion in chromosome 11 that likely affected only the L1 meristem cell layer of VN21 and tissues derived from it, such as external cell layers of berry skin.

Climate projections over France wine-growing region and its potential impact on phenology

Climate change represents a major challenge for the French wine industry. Climatic conditions in French vineyards have already changed and will continue to evolve. One of the notable effects on grapevine is the advancing growing season. The aim of this study is to characterise the evolution of agroclimatic indicators (Huglin index, number of hot days, mean temperature, cumulative rainfall and number of rainy days during the growing season) at French wine-growing regions scale between 1980 and 2019 using gridded data (8 km resolution, SAFRAN) and for the middle of the 21th century (2046-2065) with 21 GCMs statistically debiased and downscaled at 8 km. A set of three phenological models were used to simulate the budburst (BRIN, Smoothed-Utah), flowering, veraison and theoretical maturity (GFV and GSR) stages for two grape varieties (Chardonnay and Cabernet-Sauvignon) over the whole period studied. All the French wine-growing regions show an increase in both temperatures during the growing season and Huglin index. This increase is accompanied by an advance in the simulated flowering (+3 to +9 days), veraison (+6 to +13 days) and theoretical maturity (+6 to +16 days) stages, which are more noticeable in the north-eastern part of France. The climate projections unanimously show, for all the GCMs considered, a clear increase in the Huglin index (+662 to 771 °C.days compared to the 1980-1999 period) and in the number of hot days (+5.6 to 22.6 days) in all the wine regions studied. Regarding rainfall, the expected evolution remains very uncertain due to the heterogeneity of the climates simulated by the 21 models. Only 4 regions out of 21 have a significant decrease in the number of rainy days during the growing season. The two budburst models show a strong divergence in the evolution of this stage with an average difference of 18 days between the two models on all grapevine regions. The theoretical maturity is the most impacted stage with a potential advance between 40 and 23 days according to wine-growing regions.