terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Effect of riboflavin on the longevity of white and rosé wines

Effect of riboflavin on the longevity of white and rosé wines

Abstract

Light is a fundamental part at sales points which influences in the conservation of wines, particularly in those that are sold in transparent glass bottles such as rosé wines and increasingly white wines. The photochemical effect known as “light-struck taste” can cause changes in the aromatic characteristics of the wine. This “light-struck taste” is due to reactions triggered by the photochemical sensitivity of riboflavin (RBF). Other causes of wine aroma deterioration during aging occurs during transport or storage. For example, temperature changes registered in this period can affect the sealing of the bottles with the consequent air inlet. These quality losses imply the need to know in depth the photochemical effect and compared it to other deterioration causes during bottle aging, such as oxygen or temperature. This knowledge is necessary to improve the longevity and quality of white and rosé wines.

 

This work studies the influence of riboflavin (RBF) level on the appearance of aromatic deviations (ADs) in white and rosé wines. Also, determine if this influence is modified by different stimuli (light, oxygen and temperature). For this, a white and a rosé wine at 3 levels of RBF were subjected to 7 different treatments (response to light in anoxia, response to oxygen in darkness, light+oxygen, light+oxygen at 35°C, accelerated reduction at 50°C in anoxia, thermal stability at 75°C in anoxia, control at 4°C in anoxia and darkness) with the aim of accelerating the aging of the wines and causing the appearance of DAs. A sorting task sensory test was carried out to group and describe the samples organoleptically. The quantification of volatile compounds in relation to the oxidation-reduction processes (volatile sulfur compounds1, polyfunctional mercaptans2 and Strecker aldehydes3) was also carried out in some selected samples. Several technological-sensory spaces different from the initial wine stored in anoxia, in the dark and at 4 °C have been detected. Different sensory changes were found depending on whether light hits the wine in the presence or absence of oxygen in both wines.

Acknowledgements: LAAE acknowledges the support of DGA (T29), European Social Fund and the CORK2WINE project of the CIEN-CDTI 2019 Strategic Program. M.B. thanks the AEI and the MICIU for her postdoctoral grant IJC2018-037830-I. This work has received a Research Grant from the IER of the Autonomous Community of La Rioja, in its 2022 call.

References:

1)  Ontañón I. et al. (2019) Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. J. Chom. A, 1596: 152-160, DOI 10.1016/j.chroma.2019.02.052

2)  Vichi S. et al. (2015) Analysis of volatile thiols in alcoholic beverages by simultaneous derivatization/extraction and liquid chromatography-high resolution mass spectrometry. Food Chem., 175: 401-408, DOI 10.1016/j.foodchem.2014.11.095

3)  Castejón-Musulén O. et al. (2022) Accurate quantitative determination of the total amounts of Strecker

aldehydes contained in wine. Assessment of their presence in table wines. Food Res. Int., 162: 112125, DOI 10.1016/j.foodres.2022.112125

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

M. Bueno*, A. de-la-Fuente-Blanco; I. Ontañón, C. Peña, V. Ferreira, A. Escudero

Laboratory for Aroma Analysis and Enology (LAAE), Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA) Associate Unit to Instituto de las Ciencias de la Vid y del Vino (ICVV) (UR-CSIC-GR), 50009 Zaragoza, Spain

Contact the author*

Keywords

riboflavin, white wine, rosé wine, light, aging, oxygen, temperature

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Using climate services to project grapevine varietal adequation under climate change – application to cv. Tempranillo in the Douro wine region

Vine growth circumstances are becoming warmer and drier because of climate change. Higher temperatures advance ripening to a point in the season less conducive to the production of fine wine, while drought reduces yields (Van Leeuwen et al., 2019). Several wine-producing regions around the world have already recognized threats to their viticultural viability (Santos et al., 2020). An economical and cost-effective strategy for adaptation is the employment of late-ripening, drought-resistant plant material (varieties, clones, and rootstocks).