IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

Abstract

AIM: The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.

METHODS: In this study, twelve different Tempranillo wines were aged for 12 months in new 225-liter American oak barrels (medium toast degree) from different forest of the United States: Missouri, Kentucky, Ohio and Pennsylvania. These barrels were made by the Toneleria Murua in 2018 and the experiences were carried out in twelve wineries of the D.O.Ca Rioja and D.O. Rueda. Samples were taken when the wines after 6 and 12 months of aging. The monomeric phenolic compounds were quantified by high performance liquid chromatography with diode array detector (HPLC-DAD) according to the methodology proposed by Gómez-Alonso et al. (2007).

RESULTS: After 12 months of aging, wines aged in Missouri oak showed significantly higher values of total anthocyanins and stilbenes. Wines aged in Kentucky and Ohio oak showed significantly higher values of total flavonols and ellagitannins. Wines aged in Pennsylvania barrels showed higher concentrations of catechin. 

CONCLUSIONS: The results showed that the geographical origin of the Quercus Alba oak significantly affected the polyphenolic composition of the wines. The results obtained in the present study could help for selecting the oak origin that best suited to the different wines.

ACKNOWLEDGEMENTS: The authors would like to thank the Gobierno de La Rioja for the funding provided for this study through the project ADER2019-I-IDD-00067.

References

Gómez-Alonso, S.; García-Romero, E., Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20, 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canalejo Diego1, Zhao Feng1, Martínez-Lapuente Leticia1, Guadalupe Zenaida1 and Ayestarán Belén1

1Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC)

Contact the author

Keywords

Oak in wine aging, geographical origin, polyphenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Prediction of aromatic attributes of red wines from its colour properties 

Wine perception is a multisensory experience that makes use of the sight, smell, and taste senses. When wine is sensorially assessed, the stimulus received generates multiple signals that tasters convert into organoleptic descriptors. Colour is commonly the first attribute evaluated during wine tasting. Moreover, the colour properties provide the taster with a priori information of the wine’s aroma. This preconceived perception is later confirmed or denied during the aroma evaluation.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition.

Under-vine cover crop: effect over glycosidic aroma precursors of Vitis vinifera L. Cv Syrah

AIM: Volatile compounds joint to aromatic precursors form the aroma of grape must that will provide a characteristic aroma to the wine.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.