IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

Effect of Quercus Alba oak barrels from different forests on the polyphenolic composition of Tempranillo red wines

Abstract

AIM: The species and origin used for red wine oak aging determines the physiological composition of the wood and thus the finished wines. In America, oak is grown primarily in the states of Virginia, Missouri, Kentucky, Oregon, Ohio, Minnesota, Wisconsin and California. The aim of this study was to analyze how the choice of barrels made with Quercus Alba oak from different geographic areas of the United States (Missouri, Kentucky, Ohio and Pennsylvania) influences the polyphenolic composition of Tempranillo red wines.

METHODS: In this study, twelve different Tempranillo wines were aged for 12 months in new 225-liter American oak barrels (medium toast degree) from different forest of the United States: Missouri, Kentucky, Ohio and Pennsylvania. These barrels were made by the Toneleria Murua in 2018 and the experiences were carried out in twelve wineries of the D.O.Ca Rioja and D.O. Rueda. Samples were taken when the wines after 6 and 12 months of aging. The monomeric phenolic compounds were quantified by high performance liquid chromatography with diode array detector (HPLC-DAD) according to the methodology proposed by Gómez-Alonso et al. (2007).

RESULTS: After 12 months of aging, wines aged in Missouri oak showed significantly higher values of total anthocyanins and stilbenes. Wines aged in Kentucky and Ohio oak showed significantly higher values of total flavonols and ellagitannins. Wines aged in Pennsylvania barrels showed higher concentrations of catechin. 

CONCLUSIONS: The results showed that the geographical origin of the Quercus Alba oak significantly affected the polyphenolic composition of the wines. The results obtained in the present study could help for selecting the oak origin that best suited to the different wines.

ACKNOWLEDGEMENTS: The authors would like to thank the Gobierno de La Rioja for the funding provided for this study through the project ADER2019-I-IDD-00067.

References

Gómez-Alonso, S.; García-Romero, E., Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20, 618-626.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Canalejo Diego1, Zhao Feng1, Martínez-Lapuente Leticia1, Guadalupe Zenaida1 and Ayestarán Belén1

1Instituto de Ciencias de la Vid y del Vino (Universidad de la Rioja, Gobierno de La Rioja y CSIC)

Contact the author

Keywords

Oak in wine aging, geographical origin, polyphenolic compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Application of an in vitro digestion model to study the bioaccessibility and the effect of the intestinal microbiota on the red wine proanthocyanidins 

Proanthocyanidins are important phenolic fraction for wine quality, contributing to astringency, bitterness and color. Their metabolism begins in the mouth and continues throughout the gastrointestinal tract; however, most of them are accumulated in the colon where are metabolized by the intestinal microbiota, giving rise to a whole series of phenolic acids that may have greater activity at physiological level than the precursors[1]. This study aimed to evaluate in vitro the bioaccessibility of proanthocyanidins in a red wine developed by Bodegas Pradorey, as well as to evaluate the potential effect of intestinal microbiota on polyphenols metabolism identifying and quantifying secondary metabolites.

Long-Term impact of elevated CO2 exposure on grapevine physiology (Vitis vinifera L. cvs. Riesling & Cabernet Sauvignon)

Over the next 25 years, the Intergovernmental Panel on Climate Change (IPCC 2013) predicts a ~20% increase in atmospheric carbon dioxide (CO2) concentration compared to the current level. Concurrently, temperatures are steadily rising. Grapevines, known for their climate sensitivity, will show changes in phenology, physiological processes and grape compositions in response. Investigating eco-physiological processes provides insights into the response of field-grown grapevines to elevated CO2 conditions. A Free Air Carbon Dioxide Enrichment (FACE) facility was established in the Rheingau region of Germany. Two grapevine varieties (Vitis vinifera L., cvs. Riesling and Cabernet Sauvignon) were planted, with the VineyardFACE comprising three rings with ambient atmospheric CO2 (approx. 400 – 420 ppm from 2014 to 2023, aCO2) and three rings with elevated CO2 concentration (+20% to ambient; eCO2).

Scientific research for an «Ad Maiora 4.1C» application «A step back towards the future universally sustainable EME4.1C». A concrete example of forward-looking and revolutionary entrepreneurial choices in the vine and wine sector

In 1979 an enlightened and farsighted business owner in an area and in an activity unknown to him and in 120 hectares of land cultivated with corn and wheat expressed to one of us that he wanted to start a business in the wine sector. The first innovative “Vigna Dogarina Scientific Applicative Project” has become famous and harmoniously inserted in and with the “Territoir” of eastern Veneto in northeastern Italy. The revolutionary project allowed one of us: 1. to put into practice results of research related to the applied philosophy, vision, methodology of the “Great MetaEthic Chain 4.1C®” algorithm of the “Conegliano Campus 5.1C®” that considers all material, immaterial, spiritual, technical, economic, environmental, social, existential, relational, ethical, MetaEthical factors with basic indexing in a harmonious chain “ 4.1C®” and application “5.1C®”, 2. to implement:

A population genetic study of Vitis vinifera L. subsp. sylvestris Gmelin based on 3.000 individuals from 20 countries

Until the 19th century, the wild form of cultivated grapevines (vitis vinifera l. subsp. sylvestris gmelin, v. sylvestris) was ubiquitous in many european and west asian regions. However, many factors like deforestation, the intensification of agriculture, or the introduction of several pests and pathogens decimated its presence in these growing sites, and natural populations are now mostly restricted to river-bank forests and creeks with specific soil and climate conditions. in fact, v. sylvestris is now considered an endangered subspecies that is protected by law in many european countries to prevent its loss.

Exogenous dsRNA applications to identify novel candidate susceptibility genes to downy mildew

One of the major threats to viticulture is represented by fungal pathogens. Plasmopara viticola, an oomycete causing grapevine downy mildew, is one of the principal causes of grape production losses. The most efficient management strategies are represented by a combination of agronomical practices, fungicides’ applications, and use of resistant varieties. Plant resistance is conferred by the presence of resistance (R) genes. Opposed to them, susceptibility (S) genes are encoded by plants and exploited by pathogens to promote infection. Loss or mutation of S genes can limit the ability of pathogens to infect the host. By exploiting post-transcriptional gene silencing, known as RNA intereference (RNAi), it is possible to knock-down the expression of S genes, promoting plant resistance.