IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Abstract

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking. 
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3]. These products are obtained from yeasts by autolytic or hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on (i) their capacity to prevent oxidation of white wine in comparison with conventional treatment with SO2 and (ii) to evaluate their impact on wine quality.
For this study two YDs were used for all the experiments: a YDR naturally rich in reducing compounds including Glutathione and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YDs and submitted at oxidation:  8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanol (GC-MS), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition. Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YDs have an impact on color but they allow the reduction of wine browning. 
In addition, wines treated with YD present a lower ethanal amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YDs than wine without treatment. This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites during wine aging and allows the improvement of white wines oxidative stability.

References

[1] M. Nikolantonaki, A.L. Waterhouse. Journal of Agricultural and Food Chemistry, 60 (34) (2012), pp. 8484-8491.
[2] Waterhouse, A. L., & Laurie, V. F. (2006). American Journal of Enology and Viticulture, 57(3), 306–313.
[3] P. Comuzzo, F. Battistutta, M. Vendrame, M.S. Páez, G. Luisi, R. Zironi. Food Chemistry, 168 (2015), pp. 107-114

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Meunier Fabrice2, Massot Arnaud3 and Moine Virginie3

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO) – ISVV, UMR 1366 Univ. Bordeaux, INRAE, Bordeaux INP
2Amarante Process-ADERA, Unité de Recherche Œnologie, UMR 1366  
3Biolaffort 

Contact the author

Keywords

Yeast derivatives, oxidation, white wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Effects of Non-Grape Materials (MOG) on wine quercetin composition: insights from synthetic and Merlot grape juice fermentation

Quercetin precipitation has become an increasingly common issue in red wine, often resulting in visually unpleasant sediments and diminished product quality.

Juvenile-to-adult vegetative phase transition in grapevine 

The sequential activity of miR156 and miR172 controls the juvenile to adult phase transition in many plant species, where miR156 abundance decreases while miR172 increases along plant development. Very little is known about phase transition in horticultural woody species, which show substantially long vegetative phases. In grapevine, phase transition seems to be dissociated, displaying a first transition from juvenile to adult vegetative state in the first year, coincident with tendril differentiation and a subsequent induction of inflorescences in place of some of tendrils in later years under flowering inductive environmental conditions. Since grapevine is a highly heterozygous species, the generation of genetically homogeneous material for replicated transcriptomic analyses from seed-derived plants was a main challenge.

From vineyard to bottle. Rationalizing grape compositional drivers of the expression of valpolicella aroma ‘terroir’

AIM: Valpolicella is a renowned Italian wine-producing region (Paronetto, 1981). Wines produced in its different sub-regions are anecdotally believed to be aromatically different, although there is no systematic study addressing the chemical bases of such diversity

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.

Simulating the effect of heat waves on disease-resistant varieties

Agro-ecological transition and adaptation to climate change are the two major challenges facing modern agriculture.