IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Abstract

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking. 
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3]. These products are obtained from yeasts by autolytic or hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on (i) their capacity to prevent oxidation of white wine in comparison with conventional treatment with SO2 and (ii) to evaluate their impact on wine quality.
For this study two YDs were used for all the experiments: a YDR naturally rich in reducing compounds including Glutathione and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YDs and submitted at oxidation:  8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanol (GC-MS), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition. Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YDs have an impact on color but they allow the reduction of wine browning. 
In addition, wines treated with YD present a lower ethanal amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YDs than wine without treatment. This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites during wine aging and allows the improvement of white wines oxidative stability.

References

[1] M. Nikolantonaki, A.L. Waterhouse. Journal of Agricultural and Food Chemistry, 60 (34) (2012), pp. 8484-8491.
[2] Waterhouse, A. L., & Laurie, V. F. (2006). American Journal of Enology and Viticulture, 57(3), 306–313.
[3] P. Comuzzo, F. Battistutta, M. Vendrame, M.S. Páez, G. Luisi, R. Zironi. Food Chemistry, 168 (2015), pp. 107-114

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Meunier Fabrice2, Massot Arnaud3 and Moine Virginie3

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO) – ISVV, UMR 1366 Univ. Bordeaux, INRAE, Bordeaux INP
2Amarante Process-ADERA, Unité de Recherche Œnologie, UMR 1366  
3Biolaffort 

Contact the author

Keywords

Yeast derivatives, oxidation, white wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Phenology, thermal requirements and maturation of the SR 0.501-17 wine grape hybrid cultivated in contrasting climate

The use of hybrids in viticulture is one of the alternatives for sustainable production in hot and rainy regions during grapevine maturation. This sustainable production concerns the reduction of pesticide use, adaptation to climate and control of vine decline. The SR 0.501-17 wine grape hybrid, developed in the grapevine program of the Agronomic Institute of Campinas (IAC), is characterized by producing white grapes with small spherical berries with seeds. The agronomic characterization of this hybrid, especially in different climatic conditions, as well as the evaluation of its performance in winemaking are necessary. The objective of this work was to characterize the duration and thermal requirements of the different phenological stages and the influence of rainfall on the physicochemical characteristics of the must in two contrasting climate regions of the State of São Paulo.

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.),

ANTIOXIDANT CAPACITY OF INACTIVATED NON-SACCHAROMYCES YEASTS

The importance of the non-Saccharomyces yeasts (NSY) in winemaking has been extensively reviewed in the past for their aromatic or bioprotective capacity while, recently their antioxidant/antiradical potential has emerged under winemaking conditions. In the literature the antioxidant potential of NSY was solely explored through their capacity to improve glutathione (GSH) content during alcoholic fermen- tation [1], while more and more studies pointed out the activity of the non-glutathione soluble fraction released by yeasts [2].

Light-struck taste in white wine: enological approach for its prevention

Light-struck taste is a defect prevalent in white wines bottled in clear glass light-exposed for a considerable amount of time leading to a loss of color and appearance of sulfur-like odors. The reaction involves riboflavin (RF), a highly photosensitive compound that undergoes to intermolecular photoreduction by the uptake of two electron equivalents from an external donor, the methionine. The reaction includes different steps forming methional which is extremely unstable and decomposes to methane thiol and acrolein. The reaction of two molecules of methane thiol yields dimethyl disulfide. Methane thiol is highly volatile, has a low perception threshold (2 to 10 µg/L in wine) and confers aroma-like rotten eggs or cabbage.

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.