IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Abstract

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking. 
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3]. These products are obtained from yeasts by autolytic or hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on (i) their capacity to prevent oxidation of white wine in comparison with conventional treatment with SO2 and (ii) to evaluate their impact on wine quality.
For this study two YDs were used for all the experiments: a YDR naturally rich in reducing compounds including Glutathione and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YDs and submitted at oxidation:  8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanol (GC-MS), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition. Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YDs have an impact on color but they allow the reduction of wine browning. 
In addition, wines treated with YD present a lower ethanal amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YDs than wine without treatment. This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites during wine aging and allows the improvement of white wines oxidative stability.

References

[1] M. Nikolantonaki, A.L. Waterhouse. Journal of Agricultural and Food Chemistry, 60 (34) (2012), pp. 8484-8491.
[2] Waterhouse, A. L., & Laurie, V. F. (2006). American Journal of Enology and Viticulture, 57(3), 306–313.
[3] P. Comuzzo, F. Battistutta, M. Vendrame, M.S. Páez, G. Luisi, R. Zironi. Food Chemistry, 168 (2015), pp. 107-114

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Meunier Fabrice2, Massot Arnaud3 and Moine Virginie3

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO) – ISVV, UMR 1366 Univ. Bordeaux, INRAE, Bordeaux INP
2Amarante Process-ADERA, Unité de Recherche Œnologie, UMR 1366  
3Biolaffort 

Contact the author

Keywords

Yeast derivatives, oxidation, white wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Testing the pathogen e-learning and field training course on grapevine virus knowledge and management

One of the reasons of the spread of grapevine virus diseases in vineyards around the world is the lack of knowledge by the main actors of the wine sector. To face this problem, five partners worked together to develop the PAThOGEN project, a training program aimed to improve grapevine virus knowledge and management. The partnership gathers one French technical center (IFV), one Spanish university (USC), one Italian applied research center (CREA), one Spanish foundation specialized in training and technology transfer (FEUGA) and one Italian SME specialized in the development of informatics tools and in knowledge transfer (HORTA).The objectives of PAThOGEN are: (i) to develop and maintain a high-quality work-based Vocational and Education Training program, (ii) to improve the skills of professionals of the wine sector.

Spatial suitability analysis for site selection of vineyards using biophysical models and computational intelligence

Developing a sustainable agricultural production system and acquiring the full potential of land resources requires employing land-use assessment. This entails knowledge of the climate, soil, and topography of the area of interest.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.  

Towards the understanding of wine distillation in the production of brandy de Jerez. Chemical and sensory characterization of two distillation methods: continuous and batch distillation

Brandy de Jerez (BJ) is a spirit drink made exclusively from spirits and wine distillates and is characterized by the use of casks for aging that previously contained Sherries. The quality and sensory complexity of BJ depend on the raw materials and some factors: grape variety, conditions during processing the wine and its distillation, as well as the aging in the cask. Therefore, the original compounds of the grapes from which it comes are of great interest being in most cases the Airén variety. Their relationship with the quality of the musts and the wines obtained from them has been studied (1) and varies each year of harvest depending on the weather conditions (2).