IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Abstract

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking. 
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines. In a competitive global winemaking market strategy, it is crucial to reduce or even eliminate the use of SO2 and to search for new healthier strategies. In the last decade, Yeast Derivatives (YDs) were proposed as a new strategy to control wine oxidation [3]. These products are obtained from yeasts by autolytic or hydrolytic processes and dried to obtain the commercial products. The aim of this work was to carry out a preliminary investigation of YDs with different composition on (i) their capacity to prevent oxidation of white wine in comparison with conventional treatment with SO2 and (ii) to evaluate their impact on wine quality.
For this study two YDs were used for all the experiments: a YDR naturally rich in reducing compounds including Glutathione and a YDL naturally rich in lipids. White wines vinified with no sulfite additions were supplemented with one of the YDs and submitted at oxidation:  8 mg/L of dissolved O2 respectively. A Pyroscience optical O2 sensor was used for the dissolved oxygen monitoring. Wines analyses were performed after the complete oxygen consumption: wine analysis (Foss), color (CIELab), glutathione (GSH, HPLC-fluo), ethanol (GC-MS), sensorial analysis. These results were compared with those obtained for wines with no antioxidant treatment and with SO2 addition. Results showed that yeast derivatives and SO2 permit to reduce the O2 consumption rate of 55 and 60% respectively than the untreated control without antioxidant. In comparison with the control wines, YDs have an impact on color but they allow the reduction of wine browning. 
In addition, wines treated with YD present a lower ethanal amount than the control and SO2 wines. The YD naturally rich in reducing compounds show better preservation of wine’s GSH content. Finally, during wine sensorial analysis, the tasters prefer wines treated with YDs than wine without treatment. This work opens new perspectives for the development of yeast preparations usable as alternatives or as complements to sulfites during wine aging and allows the improvement of white wines oxidative stability.

References

[1] M. Nikolantonaki, A.L. Waterhouse. Journal of Agricultural and Food Chemistry, 60 (34) (2012), pp. 8484-8491.
[2] Waterhouse, A. L., & Laurie, V. F. (2006). American Journal of Enology and Viticulture, 57(3), 306–313.
[3] P. Comuzzo, F. Battistutta, M. Vendrame, M.S. Páez, G. Luisi, R. Zironi. Food Chemistry, 168 (2015), pp. 107-114

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Nioi Claudia1, Meunier Fabrice2, Massot Arnaud3 and Moine Virginie3

1Institut des Sciences de la Vigne et du Vin, UMR OENOLOGIE (OENO) – ISVV, UMR 1366 Univ. Bordeaux, INRAE, Bordeaux INP
2Amarante Process-ADERA, Unité de Recherche Œnologie, UMR 1366  
3Biolaffort 

Contact the author

Keywords

Yeast derivatives, oxidation, white wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Data fusion approaches for sensory and multimodal chemistry data applied to storage conditions

The need to combine multimodal data for complex samples is due to the different information captured in each of the techniques (modes).

An efficient protocol for long-term maintenance of embryogenic calluses of Vitis vinifera

New breeding techniques (NBTS) could play a significant role in the genetic improvement of grapevine by producing new grape varieties with improved quantitative and qualitative characteristics. However, the application of these new techniques faces some technical challenges. One of the challenges is the generation of embryogenic calluses, which are not only difficult to obtain but it is also difficult to maintain their competence during in vitro cultivation, and thus regenerate plants without defects.

Rare earth elements distribution in grape berries

Rare Earth Elements (REEs) include 15 lanthanides, yttrium and scandium. Their occurrence in soil and plants seems to be closely tied to the geological composition of the underlying mother rock, to the physical and chemical properties of the soil and to the specific ability of the plant to take up and accumulate these microelements.

A DNA-free editing approach to help viticulture sustainability: dual editing of DMR6-1 and DMR6-2 enhances resistance to downy mildew 

The sustainability of viticulture hinges on maintaining quality and yield while reducing pesticide use. Promising strides in this direction involve the development of clones with enhanced disease tolerance, particularly through the knockout of plant susceptibility genes. Knocking out of Downy Mildew Resistant 6 (DMR6) led to increased levels of endogenous salicylic acid (SA), a regulator of immunity, resulting in enhanced tolerance to Downy Mildew (DM) and other diseases in various crops.

Perception, liking and emotional response of tropical fruit aromas in Chardonnay wines

Tropical fruit aromas in wines are thought to be important to wine consumers, although there is little research to confirm this statement. With so many wine styles available, it has become important to understand the qualities that are desirable to consumers and how to achieve those qualities. Thiols and esters are compounds that have been found to cause tropical fruit aromas in chardonnay (ref). Fermentation temperature gradients and skin contact were found to increase these compounds using micro scale fermentations. This work aimed to scale up these fermentations/operations to determine if the desired tropical fruit aromas could still be achieved and if there is a perceivable difference in tropical fruit aromas, liking, and emotional response in the wines at the consumer level.