Terroir 2016 banner
IVES 9 IVES Conference Series 9 A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

A 4D high resolution vineyard soil assessment for soil-hydrological interpretation in combination with automated data analysis and visualization to manage site-specific grape and wine quality

Abstract

A Visual Information eNvironment for Effective agricultural management and Sustainability (VINES) is under development, which can provide significant competitive advantages to winegrowers by sustaining their appellation-specific grape and wine qualities and yields while measurably conserving water resources. The system has been designed to validate, refine, and improve the Automatic Landform Inference Mapping (ALIM) soil modeling/ sampling method, and to define the key components for perennial crop production, in general, and wine grapes in particular.

The feasibility of this novel technology has been validated through analysis of data collected to date through sensor deployment in West Coast vineyards and the development of highly resolved 4D soil maps that can visualize vine water availability. A comparison of predicted map-based water flow at several depths and locations vs. in-field sensor sampled values was conducted.

The accuracy of predicted soil characteristics across vineyard blocks at several locations has been validated based on physical and chemical analyses and statistical comparisons. The first completed real-time spatial soil functional maps have been used to design visual analytics to create an effective decision-making environment applicable in commercial vineyards.

Working directly with vineyard managers and winemakers, this integrated research and extension project has collaboratively developed an interactive, user-driven decision making environment that harnesses visual analytics to organize all the inputs from deployed soil sensors, high-resolution spatial soil function and water dynamic responses, while integrating all available historic and current data flows. VINES is designed to integrate future soil, plant, viticulture, and enological models into its decision support system to help respond to changing climatic and especially to drought conditions, and to improve general vineyard management, harvest scheduling, and long-term sustainability and life-cycle decisions.

DOI:

Publication date: June 23, 2020

Issue: Terroir 2016

Type: Article

Authors

David S. EBERT (1), Phillip R. OWENS (1), Trester J. GOETTING (2), Julie A. JOHNSON (3), Christian E. BUTZKE (1)

(1) Purdue University, West Lafayette, IN 47907, USA
(2) Robert Biale Vineyards, Napa, CA, USA
(3) Tres Sabores Winery, Rutherford, CA, USA

Contact the author

Keywords

soil mapping, terroir, wine quality, plant water availability, visualization, decision-support

Tags

IVES Conference Series | Terroir 2016

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.