IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Abstract

Clarification or fining of wines is a technique used in wineries to eliminate unwanted wine components, which negatively affect its quality. Clarification normally involves the addition of an adsorptive material that eliminates or reduces the presence of undesirable components. The problem is that many of the fining agents used in the industry contain allergens, such as caseinates or ovalbumin. The possibility of using plant cell wall material as finning agent has been previously studied [1,2]. Other possible fining agent could be the plant cell walls material from the pulp of the grape. This material is generated during the crushing of the grape and it presence could be a problem during the maceration stage, since it greatly reduces, by adsorption, the concentration of phenolic compounds in the wine. However, due to its great affinity for tannins, it could be used to reduce the wine astringency.The objective of this study was to analyze the ability of freeze-dried grape pulp plant cell walls to act as a clarifying agent in red wines of three different varieties: Cabernet Sauvignon, Syrah and Monastrell, and one white wine of the Airén variety. 0.5 g of the lyophilized cell walls were put in contact and mixed with 50 mL of the corresponding wine (tests in triplicate), and a contact time of 7 days was assayed, after which their chromatic characteristics and total tannin concentration were analyzed by spectrophotometry. Their anthocyanin and tannin composition were also analyzed by HPLC. The material was also tested for their ability to reduce the concentration of ochratoxin A and histamine in wines.The results showed that the freeze-dried cell walls of the grape pulp have a high capacity of retaining phenolic compounds, especially tannins, although there were differences between the varieties. The treated Cabernet Sauvignon wine showed the greatest reduction in tannin concentration after finning (23%), followed by Monastrell wine (18.3%) and Syrah wine (14.3%).A problem with most fining agents is that they not only bind to tannins, but also to anthocyanins. In this way, the freeze-dried walls of grape pulp also reduced the concentration of anthocyanins in the three red variety wines, although to a lesser extent than with tannins. In this case, there were practically no differences in anthocyanin reduction between the studied wines, Monastrell (12.3%), Syrah (11.3%) and Cabernet sauvignon (12.5%).In all the wines, the addition of this fining agent reduced the concentration of ochratoxin A by 50%. However, it was not so powerful when removing histamine, where only a reduction of 8% was achieved in Monastrell and Cabernet Sauvignon wines.In conclusion, grape pulp cell walls could be a fining agent that competes with other commercial agents currently used. In addition, this plant material is generated during the vinification, so their reuse as fining agent would contribute to a circular economy. 

References

1. Jiménez-Martínez, M. D., Gómez-Plaza, E., Molero, N., & Bautista-Ortín, A. B. (2017). Fining of red wines with pomace cell wall material: effect on wine phenolic composition. Food and Bioprocess Technology, 10(8), 1531-1539.
2. Jiménez-Martínez, M. D., Bautista-Ortín, A. B., Gil-Muñoz, R., & Gómez-Plaza, E. (2019). Fining with purified grape pomace. Effect of dose, contact time and varietal origin on the final wine phenolic composition. Food chemistry, 271, 570-576.

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Osete-Alcaraz Andrea1, Ortega-Regules Ana E.2, Pérez-Porras Paula1, Bautista-Ortín Ana Belén1, Osete-Alcaraz Lucia1 and Gómez-Plaza Encarna1

1Department of Food Science and Technology, Faculty of Veterinary Science, University of Murcia
2Department of Chemical Engineering, Food and Environmental, University of Américas Puebla

Contact the author

Keywords

Anthocyanins, Tannins, fining agent, ochratoxin A, histamine.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Shoot heterogeneity effects in a Shiraz/R99 vineyard

Nous avons fait des recherches sur l’effet de l’hétérogénéité des bourgeons sur les paramètres de la croissance végétative et reproductive, la physiologie de la vigne et la composition du raisin dans une parcelle de Shiraz/Richter 99. Des bourgeons sous-développés (typiquement plus courts et moins mûrs à la véraison) ont été comparés avec

D-wines: use of LC-MS metabolomic space to discriminate italian mono-varietal red wines

Studying wine metabolome through multiple targeted methods is complicated and limitative; since grapes, yeasts, bacteria, oxygen, enological techniques and wine aging collaborate to deliver one of the richest metabolomic fingerprint.

Innovative approaches for fungicide resistance monitoring in precision management of grapevine downy mildew

Effective control with fungicides is essential to protect grapevine from downy mildew, a devastating disease caused by the oomycete Plasmopara viticola. Managing this disease faces challenges in maintaining fungicide efficacy as the number of modes of action decreases and the risk of fungicide resistance increases. Long-term measures should address strains resistant to multiple modes of action, that can be selected by the repeated use of single-site fungicides. For these reasons, a precision management of the disease, that considers the selection of the best fungicide schedule according to the sensitivity profile of the pathogen population, is needed.

Caracterización sensorial preliminar de los vinos tintos de la Isla de Tenerife (Islas Canarias, España)

En la isla de Tenerife (Islas Canarias, Espafia) existen cinco Denominaciones de Origen (D.O.) con una superficie inscrita aproximada de 5.000 hectareas. Actualmente existen 94 bodegas

Impact of changing climatic factors on physiological and vegetative growth

Scientific information on grapevine response to predicted levels of climate parameters is scarce and not sufficient to properly position the Wine Industry for the future. It is critical that the combined effects of increased temperature and CO2 on grapevines should be examined, without omitting the important link to soil water conditions. The purpose of this study is to quantify the effects of envisioned changes in climatic parameters on the functioning and growth of young grafted grapevines under controlled conditions, simulating expected future climate changes. Scientific knowledge of precisely how the newly-planted grapevine will react morphologically, anatomically and physiologically (at leaf, root and whole plant level) to the expected changes in important climatic parameters will enable producers to make better-informed decisions regarding terroir, cultivar and rootstock choices as well as the adaptation of current cultivation practices.