Banner terroir 2002
IVES 9 IVES Conference Series 9 Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Campania region grapevine patrimony: a determination of the heat requirement of 19 nearly all-native ultivars. Nine years of observations.

Abstract

[English version below]

Nous avons peu d’informations sur les cépages cultivés dans la région de la Campania (sud de l’ltalie). En particulier insuffisant sont les études sur les besoins thermiques de tels cépages. Les études sur les besoins thermiques des cépages peuvent contribuer au positionnement correct des cultivars dans les zones capables d’optimiser le rapport génotype-environnement des cépages du quel dépend, l’expression qualitative de la production. Pour les dites motivations nous avons effectué la présente étude, dans laquelle nous avons déterminé les conditions thermiques de 19 cépages presque tous indigènes de la Région, ayant comme référence le modèle proposé par AMERINE et WINKLER (1944). L’étude qui a déterminé une exigence de la chaleur des variétés étudies variables de 1625 degré-jours ( cv Fiano) a 2011 degré-jours (Bianca Zita), ajoute une autre étape à la connaissance du patrimoine viticole de la Campania.

 

There is little information on the grapevines cultivated in the Campania region (south of ltaly). In particular insufficient are the studies on the thermal requirements of such grapevines. Trials on the thermal needs of the grapevines may contribute to the correct positioning of the cultivars in areas able to optimise the environment genotype ratio of a cultivar on which, qualitative expression of the production depends. For said motivations it has been set up the present study, in which it was determined the thermal requirements of 19 cultivars nearly all native of the Region, having like reference the model proposed by AMERINE and WINKLER (1944). The study that evidenced an heat requirement of the studied cultivars variable from 1625 degree-days (cv Fiano) to 2011 degree-days (Bianca Zita), adds an other step to the acquaintance of the Campania grapevine patrimony.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

G. SCAGLIONE, C. PASQUARELLA

*Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli, “Federico II”. Via Alessandro Scarlatti, 110, 80129-Napoli

Contact the author

Keywords

Cépages, exigence de chaleur
Grapevines, thermal needs

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Fine-scale projections of future climate in the vineyards of southern Uruguay

In viticulture, climate change significantly impacts the plant’s development and the quality and characteristics of wines. These variations are often observed over short distances in a wine-growing region and are linked to local features (slope, soil, seasonal climate, etc.). The high spatial variability of climate caused by local factors is often of the same order or even higher than the temperature increase simulated by the different IPCC scenarios.

The effects of cover cropping systems on vine physiology, berry and wine quality in a climate change scenario in Switzerland

Sustainable weed control with little detrimental effects on vine physiology, yield, berry quality, soil structure, health and biodiversity is a key factor in vineyard management. Few options are available to avoid herbicide utilization and minimize negative effects of frequent tillage on soil quality. The present project aims to investigate and develop different cover management strategies in a cool climate viticultural region in Switzerland. The impact of different treatments on vine, must and wine has been studied in an experimental vineyard in Changins, Switzerland for one year and will be continued over the next three years.

Integrative study of Vitis biodiversity for next-generation breeding of grapevine rootstocks 

Drought is one of the main challenges for viticulture in the context of global change. The choice of rootstock could be leveraged for vineyard adaptation to drought as we can improve plant performance without modifying the scion variety. However, most of the existing rootstocks, selected over a century ago, have a narrow genetic background which could compromise their adaptive potential.

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.