IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Abstract

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.
Grapes from ten vineyards in the PGI zone of Attica were harvested and the wines were produced with a common vinification protocol. GC-Olfactometry was used to identify the impact aroma compounds. The final aromatic character of the wines was determined using gas chromatography-mass spectrometry (GC–MS). In addition, all wines were evaluated by a trained panel using the descriptive sensory analysis method.
In terms of the volatile characterization of the wines, a total of 28 compounds were analyzed, showing a significant trend between wines from the different subregions of the Attic vineyard. Esters appeared to be clearly distinct between the wines from the different areas, confirming the variability in volatile production among the subregions of the same GI. For instance, Principal component analysis (PCA) revealed that 2 phenyl ethyl acetate, isoamyl acetate and ethyl decanoate, enhancing the fruity character of wines, were able to divide the wines into two different groups. When the chemical and sensory data were combined, the separation of the regions became even clearer. The results of the sensory evaluation confirmed the variability and regional differences affecting wine aroma, and a relationship was found between characteristic aroma terms and the different regions. The multivariate analysis of the data differentiated the Savatiano wines according to sensory attributes: Wines from the ten different regions of Attica were classified into three groups characterized by fruity – floral aromas, herbaceous aromas, and other (nutty, burned, yeasty) aromas.
Our study, based on a combination of sensory markers and volatile profiles, revealed the impact of sub-regional typicality on wine aroma. Human intervention seems to play an important role on sub-regional typicality, which therefore cannot be determined by the geographical origin of the fruit alone. Undoubtedly, further research is needed on the differences between wine styles in different wine regions, vintages, viticultural and winemaking practices, but the results of this work are promising and provide a great approach to characterize the PGI Savatiano wines of Attica. 

DOI:

Publication date: June 24, 2022

Issue: IVAS 2022

Type: Poster

Authors

Lola Despina1, Goulioti Elli1, Miliordos Dimitros-Evangelos1 and Kotseridis Yorgos1

1Laboratory of Enology and Alcoholic Drinks, Agricultural University of Athens

Contact the author

Keywords

Savatiano, aroma, sensory analysis, GC-MS, terroir

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Aromatic maturity is a cornerstone of terroir expression in red wine

Harvesting grapes at adequate maturity is key to the production of high-quality red wines. Enologists and wine makers define several types of maturity, including technical maturity, phenolic maturity and aromatic maturity. Technical maturity and phenolic maturity are relatively well documented in the scientific literature, while articles on aromatic maturity are scarcer. This is surprising, because aromatic maturity is, without a doubt, the most important of the three in determining wine quality and typicity (including terroir expression). Optimal terroir expression can be obtained when the different types of maturity are reached at the same time, or within a short time frame. This is more likely to occur when the ripening takes place under mild temperatures, neither too cool, nor too hot. Aromatic expression in wine can be driven, from low to high maturity, by green, herbal, fresh fruit, ripe fruit, jammy fruit, candied fruit or cooked fruit aromas. Green and cooked fruit aromas are not desirable in red wines, while the levels of other aromatic compounds contribute to the typicity of the wine in relation to its origin. Wines produced in cool climates, or on cool soils in temperate climates, are likely to express herbal or fresh fruit aromas; while wines produced under warm climates, or on warm soils in temperate climates, may express ripe fruit, jammy fruit or candied fruit aromas. Growers can optimize terroir expression through their choice of grapevine variety. Early ripening varieties perform better in cool climates and late ripening varieties in warm climates. Additionally, maturity can be advanced or delayed by different canopy management practices or training systems.

Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Wine production with non-Saccharomyces yeasts is getting larger application due to the positive impact of these yeasts on wine composition. Previous studies showed notably differences in chemical composition of Merlot wines obtained with Torulaspora delbrueckii.

Rationalising the impact of time, light, temperature, and oxygen on the evolution of rosé wines by means of a surface response methodology approach

The widespread use of flint glass bottles for rosé wines is driven by consumer preference for color as a key choice factor.

Reduced fungicide sprayings: A biodiversity boost?

Pesticides are considered one of the main causes for arthropod decline in agriculture which in turn may affect ecosystem services such as natural pest control and soil fertility.

High-resolution aerial thermography for water stress estimation in grapevines

Aerial thermography has emerged as a promising tool for water stress detection in grapevines, but there are still challenges associated with this technology, particularly concerning the methodology employed to extract reliable canopy temperature values. This consideration is relevant especially in vertically trained vineyards, due to the presence of multiple surfaces which are captured by drone thermal cameras with high-resolution. To test the technology and the data analysis required, a field study was conducted during the 2022-2023 season in a model vineyard with multiple scions-rootstock combinations trained on a vertical shoot-positioning (VSP) system. Additionally, three irrigation regimes were implemented to introduce variability in water stress levels.