IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory characterization of Xinomavro PDO red wine

Chemical and sensory characterization of Xinomavro PDO red wine

Abstract

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

In this study, the volatile composition with its corresponding aroma descriptors was used to identify the main aroma compounds of the variety Xinomavro. Xinomavro (Vitis Vinifera L.) is one of the noble red grape varieties of Northern Greece and is present in many PDO red wines. In the experimental winery of our laboratory, a total of 6 different red wines were produced according to the same vinification protocol.

Aroma compounds of wine samples were extracted by Liquid-Liquid extraction, concentrated with SAFE method and analysed by Gas Chromatography-Mass Spectrometry (GC-MS) /Olfactometry to identify the key odorants of the variety. Olfactory analysis identified 30 aroma-active compounds, of which, ethyl hexanoate had the highest modified detection frequency (MF%).

25 of the key-volatile compounds were quantified using GC-MS, SIM mode, followed by the determination of Odor Activity Values (OAVs). A trained panel evaluated the wines using sensory descriptive analysis, based on a total of 11 aroma attributes. According to the data obtained, a complex aroma profile rich in alcohols, ethyl esters, acetate esters and fatty acids, with a contribution of terpenes and volatile phenols was recorded. Ethyl octanoate, ethyl hexanoate, isoamyl acetate, β-damascenone and eugenol were the aroma compounds with OAVs > 10. All these compounds are associated with fruity and  spicy aromas. Following this pattern, the aroma of the six wines was mainly characterized by three typical sensory terms, red fruits, which include berry fruits, strawberry and cherry, spices, which include pepper and clover and tomato paste.

This study provides a useful approach on the chemo-sensory fingerprint of Xinomavro PDO wines. It may be further used to determine the aroma “key” compounds responsible for Xinomavro aroma characters, as they derived from the sensory evaluation. This final result will be a great tool to improve the Xinomavro wines using winemaking methods to enhance the distinctive aromatic profile of this specific variety.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Goulioti Elli1, Kanapitsas Alexandros1, Lola Despina1, Bauer Andrea2, Jeffery David3 and Kotseridis Yorgos1

1Laboratory of Enology and Alcoholic Drinks, Agricultural University of Athens
2Faculty Life Science, Department of Food Science and Nutrition, Hamburg University of Applied Sciences
3Department of Wine Science, University of Adelaide

Contact the author

Keywords

aroma, GC-MS, OAV, sensory analysis, Xinomavro

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Low and zero alcohol “wines”: impact of different dealcoholization processes on phenol profile and health benefits

Consumers’ demand for non-alcoholic wine has notably increased in the last years: this trend is a consequence of a growing interest in more healthy habits, and as a response to higher alcohol levels in wine due to climate change. In addition, drinking limitations due to physiological/pathological conditions (e.g., pregnancy, diabetes, hepatic disorders), driving regulations, ethical/religious considerations, and high import taxes on alcoholic beverages have positively influenced this marked (us$ 1.6 billion in 2021). International organisation of vine and wine (OIV) established that alcohol content defining wines must not be less than 8.5% vol, (OIV, 2017).

Tempranillo in semi-arid tropical climate (Pernambuco-Brazil). Adaptation of some clones and their affinity to different rootstocks

The variety Aragonez (sin. Tempranillo), recently introduced in the San Francisco Valley (9º02′ S; 40º11′ W) has revealed an excellent adaptation, with high potential of quality and yield, even without clonal material.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Moderated consumption of alcoholic beverages and cancer risk

One on three cases of cancer is associated with lifestyle and nutritional patterns, and the excessive intake of alcoholic beverages is a well established risk factor. Moderate drinking has been associated with reduced or increased risk of various types of cancer, but the clinical relevance of the risk rates has not been evaluated in ad hoc prospective investigations.

Portable NIR spectroscopy for nutrient profiling in rootstock and scion material: enhancing decision-making in the grafting industry

The success of grafting in viticulture is deeply influenced by the nutrient composition of both rootstock and scion
materials. Key components such as nitrogen and carbohydrates play a crucial role in graft compatibility, establishment,
and overall plant vigor [1].