IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Abstract

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products. Due to the difficulties of separation by liquid chromatography and detection by mass spectrometry of tannins with high DP1, tannins were analyzed by UHPLC-ESI-MS after chemical depolymerization. This pre-treatment of the samples allows the cleavage of the interflavanic bonds linking the constituent monomers of the tannins and gives access to the average DP and the proportions of the different monomers. However, in wines, many reactions take place from the beginning of the wine making process to its consumption. Within the tannin structures, the new covalent bonds created by oxidation are resistant to depolymerization conditions and oxidation markers (dimers and trimers) are then obtained. These structural modifications distort to a greater or lesser extent the estimation of the average DP depending on the oxidation state of the tannins. Faced with the complexity and the large number of oxidation products generated, over the last ten years a study conducted on model solutions has allowed the identification of more than one hundred oxidation markers2,3.
Thanks to the detection and identification of these oxidation markers, an in-depth study of the tannin fraction of wines has recently allowed us to understand theirs evolutions during ageing. Three Syrah wines (2018, 2014 and 2010 vintages) were analyzed. An accelerated oxidation of the 2018 vintage sample was also performed in order to evaluate the impact of this oxidation compared to the natural evolution and evaluate the ability of this oxidation to imitate natural evolution. The monitoring of 6 types of extension, extension/terminal and terminal markers at two oxidation levels was investigated. An evolution of the tannin oxidation state during ageing by the increase of the markers of the second oxidation level over the vintages was observed. In the 2018 oxidized wine sample, the first oxidation level markers are similar to the 2014 vintage but the second oxidation level markers are higher than other vintages, indicating a more advanced state of tannin oxidation. This study showed for the first time that it was possible to follow the oxidative evolution of wine tannins by monitoring some relevant dimeric tannin oxidation markers generated after chemical depolymerization.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mouls Laetitia1, Deshaies Stacy1, Garcia François1, Suc Lucas1 and Saucier Cédric1

1SPO, Univ Montpellier, INRAE, Institut Agro

Contact the author

Keywords

Proanthocyanidin, Flavan-3-ol, oxidation marker, wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Influence of the vintage, clone and rootstock on the chemical characteristics of Syrah tropical wines from Brazil

In the Northeast of Brazil, vines can produce twice a year, because annual average temperature is 26ºC, with high solar radiation and water availability for irrigation.

Identification of novel aromatic precursors in winemaking grapes using an optimized fractionation and UHPLC-MS analysis

Winemaking grapes contain a diverse array of non-volatile precursors that become noticeable only after hydrolysis reactions or molecular rearrangements, during which aroma compounds are generated and released [1]. Among these, glycosidic precursors are the most abundant and play a key role in the development of wine aroma [2].

Grape phylloxera meets drought: increased risk for vines under climate change?

Climate change is increasing the frequency and severity of drought periods leading to significant impacts on agro‐economic activities

Vineyard management for environment valorisation

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

Aroma and quality assessment for vertical vintages using machine learning modelling based on weather and management information

Wine quality traits are usually given by parameters such as aroma profile, total acidity, alcohol content, colour and phenolic content, among others