IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Abstract

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products. Due to the difficulties of separation by liquid chromatography and detection by mass spectrometry of tannins with high DP1, tannins were analyzed by UHPLC-ESI-MS after chemical depolymerization. This pre-treatment of the samples allows the cleavage of the interflavanic bonds linking the constituent monomers of the tannins and gives access to the average DP and the proportions of the different monomers. However, in wines, many reactions take place from the beginning of the wine making process to its consumption. Within the tannin structures, the new covalent bonds created by oxidation are resistant to depolymerization conditions and oxidation markers (dimers and trimers) are then obtained. These structural modifications distort to a greater or lesser extent the estimation of the average DP depending on the oxidation state of the tannins. Faced with the complexity and the large number of oxidation products generated, over the last ten years a study conducted on model solutions has allowed the identification of more than one hundred oxidation markers2,3.
Thanks to the detection and identification of these oxidation markers, an in-depth study of the tannin fraction of wines has recently allowed us to understand theirs evolutions during ageing. Three Syrah wines (2018, 2014 and 2010 vintages) were analyzed. An accelerated oxidation of the 2018 vintage sample was also performed in order to evaluate the impact of this oxidation compared to the natural evolution and evaluate the ability of this oxidation to imitate natural evolution. The monitoring of 6 types of extension, extension/terminal and terminal markers at two oxidation levels was investigated. An evolution of the tannin oxidation state during ageing by the increase of the markers of the second oxidation level over the vintages was observed. In the 2018 oxidized wine sample, the first oxidation level markers are similar to the 2014 vintage but the second oxidation level markers are higher than other vintages, indicating a more advanced state of tannin oxidation. This study showed for the first time that it was possible to follow the oxidative evolution of wine tannins by monitoring some relevant dimeric tannin oxidation markers generated after chemical depolymerization.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mouls Laetitia1, Deshaies Stacy1, Garcia François1, Suc Lucas1 and Saucier Cédric1

1SPO, Univ Montpellier, INRAE, Institut Agro

Contact the author

Keywords

Proanthocyanidin, Flavan-3-ol, oxidation marker, wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].

Preliminary results of the effect of post veraison pre-pruning on grape and wine composition in Tannat and Merlot

The seasonal’s climatic conditions determine the composition of grapes at harvest as they affect the vine’s physiology and development. High temperatures during the grape ripening period cause a high accumulation of sugars and degradation of fruit acidity ,and alter the synthesis of polyphenols. Therefore, some vineyard management can be applied in order to modify grapevine impact on climate variability. One example is the pre-pruning at the beginning of grape ripening, which can delay the ripening period and modify the composition of the grapes at harvest. This work aims to evaluate the pre-pruning field technique on yield components and alcohol content in wines of Tannat and Merlot varieties.

First characterization of thiol precursors in colombard and gros manseng: comparison of two cultivation practices

AIM: Organic production of wine in the past years has known an important augmentation. This type of cultivation practice switches synthetic phytosanitary product for copper-based protection as fungicide.

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Preliminary results on the effect of different organic mulching on wine polyphenol content

Soil mulching is an interesting strategy to reduce soil evaporation, assist in weed control, improve soil structure and organic content, increase soil water infiltration, and decrease diurnal temperature fluctuations