IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Study of the evolution of tannins during wine aging by mass spectrometry monitoring of oxidation markers released after chemical depolymerization

Abstract

Among the many compounds in wine, condensed tannins play an important role in the organoleptic properties of the products; they are partly responsible for astringency, bitterness and also contribute to the color. This research work aims to study the oxidation state of these bio-heteropolymers which is an important lock in the analysis of processed products in order to better control their quality. Indeed, their identification remains at present a challenge because of the large heterogeneity of their degrees of polymerization (DP) based on 4 monomers (epicatechin, catechin, epigallocatechin, epicatechin-3-O-gallate) thus multiplying the number of oxidation products. Due to the difficulties of separation by liquid chromatography and detection by mass spectrometry of tannins with high DP1, tannins were analyzed by UHPLC-ESI-MS after chemical depolymerization. This pre-treatment of the samples allows the cleavage of the interflavanic bonds linking the constituent monomers of the tannins and gives access to the average DP and the proportions of the different monomers. However, in wines, many reactions take place from the beginning of the wine making process to its consumption. Within the tannin structures, the new covalent bonds created by oxidation are resistant to depolymerization conditions and oxidation markers (dimers and trimers) are then obtained. These structural modifications distort to a greater or lesser extent the estimation of the average DP depending on the oxidation state of the tannins. Faced with the complexity and the large number of oxidation products generated, over the last ten years a study conducted on model solutions has allowed the identification of more than one hundred oxidation markers2,3.
Thanks to the detection and identification of these oxidation markers, an in-depth study of the tannin fraction of wines has recently allowed us to understand theirs evolutions during ageing. Three Syrah wines (2018, 2014 and 2010 vintages) were analyzed. An accelerated oxidation of the 2018 vintage sample was also performed in order to evaluate the impact of this oxidation compared to the natural evolution and evaluate the ability of this oxidation to imitate natural evolution. The monitoring of 6 types of extension, extension/terminal and terminal markers at two oxidation levels was investigated. An evolution of the tannin oxidation state during ageing by the increase of the markers of the second oxidation level over the vintages was observed. In the 2018 oxidized wine sample, the first oxidation level markers are similar to the 2014 vintage but the second oxidation level markers are higher than other vintages, indicating a more advanced state of tannin oxidation. This study showed for the first time that it was possible to follow the oxidative evolution of wine tannins by monitoring some relevant dimeric tannin oxidation markers generated after chemical depolymerization.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Mouls Laetitia1, Deshaies Stacy1, Garcia François1, Suc Lucas1 and Saucier Cédric1

1SPO, Univ Montpellier, INRAE, Institut Agro

Contact the author

Keywords

Proanthocyanidin, Flavan-3-ol, oxidation marker, wine aging

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.