IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Study of the interactions between wine anthocyanins and proline rich proteins

Study of the interactions between wine anthocyanins and proline rich proteins

Abstract

The interaction between tannins and salivary proteins is considered to be the basis of the phenomenon of wine astringency. Recently, some authors have revealed that some anthocyanins can also contribute to this mouthfeel sensation by interacting with proline rich proteins (PRPs). However, more studies are needed in order to elucidate the affinity of anthocyanins with these proteins.

Thus, the general objective of this work was determine the interaction between malvidin-3-O-glucoside, malvidin-3-O-(6-O-acetyl)-glucoside, and malvidin-3-O-(6-O-p-coumaroyl)-glucoside (isolated from grape skin) with a PRP model peptide (IB7-14) and their capacity of precipitate PRPs in a wine model solution. To archived this objectif, several techniques were used: i) mass spectrometry (FIA-ESI-QTOF) and 1H proton NMR to determine the formation of complexes and the stoichiometry of anthocyanins-IB7-14 complexe ii) saturation transfer difference (STD) NMR spectroscopy in order to calculate the dissociation constants (KD) and the affinity of each anthocyanin with the peptide and, iii) HPLC-DAD that was used to evaluate the capacity of anthocyanins to precipitate PRPs (isolated from human saliva).

Our results demonstrate that anthocyanins are able to interact with IB7-14, with different stoichiometries and binding strengths. A stoichiometry of 3:1 for the malvidin-3-O-glucoside-peptide, 1:1 for the acetylated form, and 4:1 for the coumaroylated form were observed. These ratios was also confirmed by 1H proton NMR. According to the obtained dissociation constants, the affinity of malvidin-3-O-glucoside (17.5 mM) was much higher than for malvidin-3-O-(6-O-acetyl)-glucoside (order of hundred mM). Unfortunately, the calculation of KD for malvidin-3-O-(6-O-p-coumaroyl)-glucoside was impossible due to precipitate formation. To finish, when malvidin-3-O-(6-O-p-coumaroyl)-glucoside was mixed with human salivary PRPs we observed that the precipitation of PRPs was much higher (14%) than for malvidin-3-O-glucoside (7%). In the same way, malvidin-3-O-(6-O-acetyl)-glucoside did not lead a significant decrease of their quantities when it was in contact with PRPs, suggesting the absence of interactions. It could be hypothesized that the additional presence of an aromatic group of coumaroylated form of malvidin could provide stronger hydrophobic bonds than malvidin-3-O-glucoside. Likewise, the chemical structural differences between malvidin-3-O-glucoside and malvidin-3-O-(6-O-acetyl)-glucoside can cause a potential loss of hydrogen bonding preventing thus the stabilization between the anthocyanin and the peptide. These findings proved for the first time that wine anthocyanins interact differently with the peptide IB7-14 and that can potentially affect the astringency sensation.

Section for all references

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Hornedo Ortega Ruth1, Jourdes Michaël, Da Costa Gregory, Pedrot Eric, Richard Tristan and Teissedre Pierre-Louis

1Departamento de Nutrición, Bromatología, Toxicología y Medicina Legal. Facultad de Farmacia. Universidad de Sevilla
2UMR Œnology (OENO), UMR 1366, ISVV, Université de Bordeaux-INRAE-Bordeaux INP, F33882 Villenave d’Ornon France

Contact the author

Keywords

anthocyanin, proline rich protein, astringecy, wine

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Impact of tomato black ring virus (TBRV) on quantitative and qualitative feature of Vitis vinifera L. Cv. Merlot and Cabernet franc

Fifteen nepoviruses are able to induce fanleaf degeneration in grapes. Grapevine fanleaf virus (GFLV) is the main causal agent of this disease

Phenolic profile of fungus-resistant varieties (PIWIs) for red wine production

Context and Purpose of the Study. PIWI grape varieties (Pilzwiderstandsfähig, fungus-resistant) offer innovative solutions for sustainable viticulture by addressing environmental challenges faced by traditional Vitis vinifera.

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Genetic and hormonal regulation of grape berry cuticle formation

The plant surface typically comprises of various epidermal cell types which synthesise and deposit a protective waxy layer known as the cuticle. The cuticle is a significant contributor to important crop traits related to drought tolerance, biotic stress, postharvest fruit quality as well as providing structural support. In this work we have investigated grape berry cuticle formation in the context of the accumulation of anti-fungal specialised metabolites and the ability of the cuticle to structurally cope with the rapid expansion of ripening berries. Metabolic QTL analysis was performed in a grapevine cross population, using chemical profiling data collected via GC-MS analysis for cuticular waxes.

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].