IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Influence of two yeast strains and different nitrogen nutrition on the aromatic compounds in Lugana wine

Abstract

Lugana Protected Designation of Origin (PDO) wines are made from Turbiana grapes. The aroma of Lugana wines results from the combined contribution of esters, terpenes, norisprenoids, sulfur compounds and the benzenoid methyl salicylate. This study aims to investigate how volatile aroma compounds are affected by different nitrogen supplies and yeast strains. Wines were produced with a standard protocol with 2021 Turbiana grapes with two different yeasts Zymaflore Delta e Zymaflore X5 (Laffort, France).During the alcoholic fermentation of the must, when H2S appeared, additions of various nitrogen supply were made: inorganic nitrogen, organic nitrogen, a mix of inorganic and organic nitrogen and organic nitrogen with an addition of pure methionine. During wine fermentation, a daily measurement of hydrogen sulfide was carried out. Free volatile compounds were analyzed using GC-MS techniques. Analyses during the alcoholic fermentation process of the Lugana wines indicate that Zymaflore Delta developed higher concentrations of H2S than the other. On the other hand, observing the influence of the different nitrogen nutrients, it can be said that the best solution to limit the formation of H2S is to use the mix of organic and inorganic nitrogen. For almost all the biochemical classes of the analysed compounds, a statistically significant difference was shown about the yeast variable. Regarding the differences given by the variable of nitrogen nutrition, however, it is shown that all classes are influenced by it. With regard to Lugana wines fermented with Zymaflore Delta, the addition of the mix of organic and inorganic nitrogen led to higher concentrations of α-terpineol, the use of organic nitrogen favored a higher presence of TDN, and the use of this type of nitrogen added with methionine led to higher concentrations of α-terpineol. On the other hand, wines fermented with Zymaflore X5, the addition of the nitrogen nutrition mix during fermentation resulted in higher concentrations of norisoprenoids, while the addition of organic nitrogen and methionine resulted in higher levels of DMS, linalool, α-terpineol and methyl salicylate. This study showed that the choice of yeast proved to be the variable with the greatest impact on the volatile chemical profile of the wines studied. Furthermore, the choice of nitrogen nutrient had a significant impact on the production of volatile compounds but did not follow a specific trend within the classes of compounds that could be defined as improving or worsening the general aromatic profile of the wines. In fact, the yeast-nutrient interaction is specific, so different yeasts can have different outputs with the same nutrient. Therefore, it is important to calibrate the nitrogen nutrition according to the yeast strain chosen. The present work was supported by Laffort, France

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Perina Beatrice1, Moine Virginie2, Massot Arnaud2, Slaghenaufi Davide1, Luzzini Giovanni1 and Ugliano Maurizio1

1Department of Biotechnology, University of Verona
2Biolaffort, France

Contact the author

Keywords

ugana wine, White wine, Nitrogen nutrition, Aroma compound, GC-MS

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Sensory impacts of the obturator used for the Chasselas: study over the time

Many parameters affect the organoleptic characteristics of wine: internal parameters like the chemical composition or polyphenol content and external as for example storage conditions or the type of obturator. The aim of this study was to characterize sensorally the impacts of several type of obturator on a white wine: Chasselas. To determine the organoleptic characteristics of this wine, a quantitative descriptive analysis could be used. But rapid sensory methods were preferred in this project. Indeed these methods are an appropriate alternative to conventional descriptive methods for quickly assessing sensory product discrimination.

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Mannoproteins extraction from wine lees using natural deep eutectic solvents

Wine lees can be a good source of yeast mannoproteins for both food and wine applications [1,2]. However, mannoprotein extraction from wine lees has not yet been scaled up to an industrial scale, mainly because of the limited cost-effectiveness ratio of the methods employed at the laboratory scale [2].

Variety specific thresholds for plant-based indicators of vine nitrogen status

Aim: Several plant-based indicators of vine N status are reported in the literature. Among these, yeast assimilable nitrogen in grape must (YAN) and total N concentration of petiole and leaf blades are considered to be reliable indicators and so is the chlorophyll index, measured with a device called N-tester. The N-tester index is used to measure the intensity of the green colour of the leaf blade, and therefore to estimate its chlorophyll content.