IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 How different SO2 doses impact amino acid and volatile profile of white wines

How different SO2 doses impact amino acid and volatile profile of white wines

Abstract

Sulphur dioxide (SO2) is a well-established preservative in the wine industry. Its ability to act in different stages of the process as an antioxidant and an antiseptic as main characteristics makes it versatile. However, the need for its reduction or even its replacement has been increasing by the regulatory authorities as well as by the final consumer. To understand the impact of SO2 during ageing on volatile organic compounds (VOCs) and amino acids (AAs) profiles, two white wines (one varietal and one blend) were aged under the same conditions, in the presence of different doses of SO2. After fermentation (t=0), 0, 30, 60, 90 and 120 mg/L of SO2 were applied, wines were kept over lees for 3 months (t=3), then were bottled after 3 (t=6) and 9 (t=12) months. VOCs were analysed by HS-SPME-GC/MS for all samples and the AAs were analyzed by HPLC-DAD for t=0 and t=3 wines. A total of 83 VOCs were tentatively identified, 70 in monovarietal wine and 73 in the blend wine. The main chemical groups present are esters, alcohols, carboxylic acids, aldehydes and 12 miscellaneous compounds. When a Principal Component Analysis (PCA) was performed on VOCs semi-quantification of each wine it was observed that the 1st and 2nd PCs explained between 64% and 76 % of the overall system variance, for monovarietal and blend wines respectively. In monovarietal wine was attained lower distinctions for different SO2 applied doses on samples with 3 and 12 months. However, for 6 months of evolution samples are well separated. In this case, both principal components seem to influence the distribution of samples with a similar weight. For the blend wine, a less clear distribution of the samples was observed for evolution time of 3 and 6 months. This may indicate that blend wine might be less sensitive to SO2 doses and evolution time when compared with Antão Vaz wines. AAs profile showed that maturation on lees lead to an increasing total concentration of AAs. Based on PCA analyses it was observed that SO2 also influences the evolution of the amino acids especially on the AV wines.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Gomes da Silva Marco1, Almeida Santos Cátia V.1, Pereira Catarina1, Martins Nuno1 and Cabrita Maria João1

1LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

Contact the author

Keywords

White wine, Ageing, Sulphur dioxide (SO2), Amino acids, Volatile organic compound (VOC); HS-SPME-GC/MS; HPLC-DAD.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

RED WINE AGING WITHOUT SO₂: WHAT IMPACT ON MICROBIAL COMMUNITY?

Nowadays, the use of food preservatives is controversial, SO2 being no exception. Microbial communities have been particularly studied during the prefermentary and fermentation stages in a context of without added SO2. However, microbial risks associated with SO2 reduction or absence, particularly during the wine aging process, have so far been little studied. The microbiological control of wine aging is a key issue for winemakers wishing to produce wines without added SO2. The aim of the present study is to evaluate the impact of different wine aging strategies according to the addition or not of SO2 on the microbiological population levels and diversity.

Ceramic imprint in wine: influence of hydraulic ratio on ceramic dissolution and wine pH in amphorae systems

This interaction is primarily due to an acidic attack on the ceramic by the wine. It results in (1) the dissolution of the ceramic into the wine and the release of a wide variety of elements; and (2) an increase of the wine pH. The extent of these effects depends on the mineralogical and chemical composition of the ceramic, as well as the hydraulic ratio of the ceramic-wine system (the term hydraulic ratio (ρ) defines here the volume of wine over the surface area of the ceramic in contact with the wine).

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

Winemaking techniques and wine tasting methods at the end of the Middle Ages

Les pratiques de vinification et de dégustation du vin sont souvent perçues, à travers un discours marketing très puissant, sous l’angle d’une tradition millénaire qui perdure depuis le Moyen Âge. En Bourgogne, il est courant de rattacher les racines de ces pratiques à l’activité des institutions ecclésiastiques qui possédaient d

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.