IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

Abstract

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality. The presence of antioxidants like sulphur dioxide and hydrolysable tannins can stop the promoted oxidation process. The experiments were examined on four Chardonnays. Depending on the variant sulphur dioxide and hydrolysable tannins were added separately and in combination to the wine. Wines were treated with two doses of 1 kJ/L and 2 kJ/L and compared against the control wine. The results show that the simultaneous presence of both antioxidants can efficiently reduce the negative effects of UV-C treatment. With an UV-C dose of 2 kJ/L no significant changes on the basis of chemical and sensory tests were detected. Furthermore, it was found that the lower UV-C light dose promoted the formation of odour-active esters and alcohols. Additionally, the results showed that the increasing concentration of free sulphur dioxide can lead to increased formation of odour-active substance with the odour attribute burning.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cvetkova Svetlana1 and Durner Prof. Dr. Dominik1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz

Contact the author

Keywords

UV-C light, photo-oxidation, SO2, hydrolysable tannins, 2-Aminoacetophenone

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Organic Oregon: an emerging experience in terroir tourism

Emerging from anthropology, climatology, ecology, gastronomy, geography and wine tourism, terroir tourism has been recently recognized to have potential for developing rural agriculture tourism

Effect of nitrogen content on fermentation kinetics and aroma profile of assyrtiko wine

Today, there is need to design, produce and label terroir wines, with unique organoleptic properties and more “attractive to consumers”. For this purpose, two Saccharomyces cerevisiae yeast strains (Sa and Sb) isolated during spontaneous fermentations were used for white wine production from the Assyrtiko grape of Santorini. A third commercial strain was used as control.

Mapping plant water status to indirectly assess variability in grape flavonoids and inform selective harvest decisions

Plant water stress affects grape (Vitis vinifera L.) berry composition and is variable in space due to variations in the physical environment at the growing site. Could we use water status maps as a sensitive tool to discriminate between harvest zones?