IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

Abstract

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality. The presence of antioxidants like sulphur dioxide and hydrolysable tannins can stop the promoted oxidation process. The experiments were examined on four Chardonnays. Depending on the variant sulphur dioxide and hydrolysable tannins were added separately and in combination to the wine. Wines were treated with two doses of 1 kJ/L and 2 kJ/L and compared against the control wine. The results show that the simultaneous presence of both antioxidants can efficiently reduce the negative effects of UV-C treatment. With an UV-C dose of 2 kJ/L no significant changes on the basis of chemical and sensory tests were detected. Furthermore, it was found that the lower UV-C light dose promoted the formation of odour-active esters and alcohols. Additionally, the results showed that the increasing concentration of free sulphur dioxide can lead to increased formation of odour-active substance with the odour attribute burning.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cvetkova Svetlana1 and Durner Prof. Dr. Dominik1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz

Contact the author

Keywords

UV-C light, photo-oxidation, SO2, hydrolysable tannins, 2-Aminoacetophenone

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

The ability of wine yeasts fermenting by the addition of exogenous biotin

Research is focused on the increase of the field of obtaining the wine yeast, under physical and chemical conditions. Study of different influences on yeast production is very important for the promotion

Influence of thermal stress on Malbec, Syrah, and Bonarda (Vitis vinifera L.) anthocyanin content and evolution in growing seasons with heatwaves in semi-arid climate (Argentina)

It is known that high temperature influences the synthesis, transformation and degradation of grape anthocyanin (ANT) threatening the quality of grapes and coloured wines.

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.