IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

Chemical and sensory influences of the UV-C light of 254 nm in combination with the antioxidant substances in wine

Abstract

The UV-C light enhances oxidative processes in wine. Increasing the dose of UV-C can lead to olfactoric, gustatoric and colour changes in wine. These changes are triggered by a series of photochemical reactions such as degradation of esters, the formation of odour-active substances such as 2 aminoacetophenone through the photooxidation of amino acids. Ultimately, these reactions can lead to a reduced wine quality. The presence of antioxidants like sulphur dioxide and hydrolysable tannins can stop the promoted oxidation process. The experiments were examined on four Chardonnays. Depending on the variant sulphur dioxide and hydrolysable tannins were added separately and in combination to the wine. Wines were treated with two doses of 1 kJ/L and 2 kJ/L and compared against the control wine. The results show that the simultaneous presence of both antioxidants can efficiently reduce the negative effects of UV-C treatment. With an UV-C dose of 2 kJ/L no significant changes on the basis of chemical and sensory tests were detected. Furthermore, it was found that the lower UV-C light dose promoted the formation of odour-active esters and alcohols. Additionally, the results showed that the increasing concentration of free sulphur dioxide can lead to increased formation of odour-active substance with the odour attribute burning.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Cvetkova Svetlana1 and Durner Prof. Dr. Dominik1

1Weincampus Neustadt, Institute for Viticulture and Oenology, Dienstleistungszentrum Ländlicher Raum (DLR) Rheinpfalz

Contact the author

Keywords

UV-C light, photo-oxidation, SO2, hydrolysable tannins, 2-Aminoacetophenone

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Use of Fourier Transform Infrared Spectroscopy (FTIR) to rapidly verify the botanical authenticity of gum arabic

Gum arabic is composed of a polysaccharide rich in galactose and arabinose along with a small protein fraction [1, 2], which gives its stabilizing power with respect to the coloring substances or tartaric precipitation of bottled wine. It is a gummy exudation from Acacia trees; the products used in enology have two possible botanical origins, i.e. Acacia seyal and Acacia senegal, with different chemical-physical features and consequently different technological effects on wines. The aim of this work is to evaluate the feasibility of discrimination of commercial gums Arabic between their two different sources, on the basis of the absorption of the Fourier Transform Infrared (FT-IR) spectra of their aqueous solutions, in order to propose an extremely rapid and cost-saving method for quality control laboratories.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.

Building of a hierarchy of wines based on terroirs: an initiative from the producers of Muscadet

The Muscadet area is situated in the southeast of Nantes, close to the Atlantic coast. It constitutes the western extension
of the French vineyard “Loire Valley”. The Muscadet is renowned and often spontaneously linked to a white wine.
However it remains misconceived as an ordinary wine, lacking authenticity.

Application of a low-cost device VIS-NIRs-based for polyphenol monitoring during the vinification process

In red wine production, phenolic maturity is becoming increasingly important. Anthocyanins, flavonoids and total polyphenols content and availability significantly influence the harvest time of wine grapes while, during vinification process, their extraction strongly affects wine body, color and texture

The« Sigales’ method »

Le comportement de la vigne est étroitement lié aux propriétés hydriques des sols surtout dans leurs parties profondes.